<item ident="N2-7373" title="N2 | Euler's method for approximating IVP solutions | ver. 7373"> <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>question_type</fieldlabel> <fieldentry>essay_question</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> <presentation> <material> <mattextxml> <div class="exercise-statement"> <p> <strong>N2.</strong> </p> <p> Use Euler's method with <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?h= 0.10" alt="h= 0.10" title="h= 0.10" data-latex="h= 0.10"/> to approximate <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x( 0.20 )" alt="x( 0.20 )" title="x( 0.20 )" data-latex="x( 0.20 )"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y( 0.20 )" alt="y( 0.20 )" title="y( 0.20 )" data-latex="y( 0.20 )"/> given the following system of IVPs. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x'= -2 \, t^{2} x^{2} - 2 \, t y^{2} + 3 \hspace{2em} x( 0 )= -2" alt="x'= -2 \, t^{2} x^{2} - 2 \, t y^{2} + 3 \hspace{2em} x( 0 )= -2" title="x'= -2 \, t^{2} x^{2} - 2 \, t y^{2} + 3 \hspace{2em} x( 0 )= -2" data-latex="x'= -2 \, t^{2} x^{2} - 2 \, t y^{2} + 3 \hspace{2em} x( 0 )= -2"/> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y'= -3 \, x^{2} y^{2} - 2 \, t^{2} x - 3 \hspace{2em} y( 0 )= -2" alt="y'= -3 \, x^{2} y^{2} - 2 \, t^{2} x - 3 \hspace{2em} y( 0 )= -2" title="y'= -3 \, x^{2} y^{2} - 2 \, t^{2} x - 3 \hspace{2em} y( 0 )= -2" data-latex="y'= -3 \, x^{2} y^{2} - 2 \, t^{2} x - 3 \hspace{2em} y( 0 )= -2"/> </p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-statement"> <p> <strong>N2.</strong> </p> <p> Use Euler's method with <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?h=%200.10" alt="h= 0.10" title="h= 0.10" data-latex="h= 0.10"> to approximate <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x(%200.20%20)" alt="x( 0.20 )" title="x( 0.20 )" data-latex="x( 0.20 )"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y(%200.20%20)" alt="y( 0.20 )" title="y( 0.20 )" data-latex="y( 0.20 )"> given the following system of IVPs. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x'=%20-2%20%5C,%20t%5E%7B2%7D%20x%5E%7B2%7D%20-%202%20%5C,%20t%20y%5E%7B2%7D%20+%203%20%5Chspace%7B2em%7D%20x(%200%20)=%20-2" alt="x'= -2 \, t^{2} x^{2} - 2 \, t y^{2} + 3 \hspace{2em} x( 0 )= -2" title="x'= -2 \, t^{2} x^{2} - 2 \, t y^{2} + 3 \hspace{2em} x( 0 )= -2" data-latex="x'= -2 \, t^{2} x^{2} - 2 \, t y^{2} + 3 \hspace{2em} x( 0 )= -2"> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y'=%20-3%20%5C,%20x%5E%7B2%7D%20y%5E%7B2%7D%20-%202%20%5C,%20t%5E%7B2%7D%20x%20-%203%20%5Chspace%7B2em%7D%20y(%200%20)=%20-2" alt="y'= -3 \, x^{2} y^{2} - 2 \, t^{2} x - 3 \hspace{2em} y( 0 )= -2" title="y'= -3 \, x^{2} y^{2} - 2 \, t^{2} x - 3 \hspace{2em} y( 0 )= -2" data-latex="y'= -3 \, x^{2} y^{2} - 2 \, t^{2} x - 3 \hspace{2em} y( 0 )= -2"> </p> </div> </mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> <itemfeedback ident="general_fb"> <flow_mat> <material> <mattextxml> <div class="exercise-answer"> <h4>Partial Answer:</h4> <ul> <li><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x( 0.10 )\approx -1.70" alt="x( 0.10 )\approx -1.70" title="x( 0.10 )\approx -1.70" data-latex="x( 0.10 )\approx -1.70"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y( 0.10 )\approx -7.10" alt="y( 0.10 )\approx -7.10" title="y( 0.10 )\approx -7.10" data-latex="y( 0.10 )\approx -7.10"/></li> <li><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x( 0.20 )\approx -2.41" alt="x( 0.20 )\approx -2.41" title="x( 0.20 )\approx -2.41" data-latex="x( 0.20 )\approx -2.41"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y( 0.20 )\approx -51.1" alt="y( 0.20 )\approx -51.1" title="y( 0.20 )\approx -51.1" data-latex="y( 0.20 )\approx -51.1"/></li> </ul> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-answer"> <h4>Partial Answer:</h4> <ul> <li> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x(%200.10%20)%5Capprox%20-1.70" alt="x( 0.10 )\approx -1.70" title="x( 0.10 )\approx -1.70" data-latex="x( 0.10 )\approx -1.70"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y(%200.10%20)%5Capprox%20-7.10" alt="y( 0.10 )\approx -7.10" title="y( 0.10 )\approx -7.10" data-latex="y( 0.10 )\approx -7.10"> </li> <li> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x(%200.20%20)%5Capprox%20-2.41" alt="x( 0.20 )\approx -2.41" title="x( 0.20 )\approx -2.41" data-latex="x( 0.20 )\approx -2.41"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y(%200.20%20)%5Capprox%20-51.1" alt="y( 0.20 )\approx -51.1" title="y( 0.20 )\approx -51.1" data-latex="y( 0.20 )\approx -51.1"> </li> </ul> </div> </mattext> </material> </flow_mat> </itemfeedback> </item>