<item ident="N2-1188" title="N2 | Euler's method for approximating IVP solutions | ver. 1188"> <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>question_type</fieldlabel> <fieldentry>essay_question</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> <presentation> <material> <mattextxml> <div class="exercise-statement"> <p> <strong>N2.</strong> </p> <p> Use Euler's method with <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?h= 0.10" alt="h= 0.10" title="h= 0.10" data-latex="h= 0.10"/> to approximate <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x( 1.2 )" alt="x( 1.2 )" title="x( 1.2 )" data-latex="x( 1.2 )"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y( 1.2 )" alt="y( 1.2 )" title="y( 1.2 )" data-latex="y( 1.2 )"/> given the following system of IVPs. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x'= 3 \, t^{2} x^{2} + 3 \, x y \hspace{2em} x( 1 )= -1" alt="x'= 3 \, t^{2} x^{2} + 3 \, x y \hspace{2em} x( 1 )= -1" title="x'= 3 \, t^{2} x^{2} + 3 \, x y \hspace{2em} x( 1 )= -1" data-latex="x'= 3 \, t^{2} x^{2} + 3 \, x y \hspace{2em} x( 1 )= -1"/> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y'= -t^{2} y^{2} + 3 \, x^{2} y - 1 \hspace{2em} y( 1 )= 0" alt="y'= -t^{2} y^{2} + 3 \, x^{2} y - 1 \hspace{2em} y( 1 )= 0" title="y'= -t^{2} y^{2} + 3 \, x^{2} y - 1 \hspace{2em} y( 1 )= 0" data-latex="y'= -t^{2} y^{2} + 3 \, x^{2} y - 1 \hspace{2em} y( 1 )= 0"/> </p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-statement"> <p> <strong>N2.</strong> </p> <p> Use Euler's method with <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?h=%200.10" alt="h= 0.10" title="h= 0.10" data-latex="h= 0.10"> to approximate <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x(%201.2%20)" alt="x( 1.2 )" title="x( 1.2 )" data-latex="x( 1.2 )"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y(%201.2%20)" alt="y( 1.2 )" title="y( 1.2 )" data-latex="y( 1.2 )"> given the following system of IVPs. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x'=%203%20%5C,%20t%5E%7B2%7D%20x%5E%7B2%7D%20+%203%20%5C,%20x%20y%20%5Chspace%7B2em%7D%20x(%201%20)=%20-1" alt="x'= 3 \, t^{2} x^{2} + 3 \, x y \hspace{2em} x( 1 )= -1" title="x'= 3 \, t^{2} x^{2} + 3 \, x y \hspace{2em} x( 1 )= -1" data-latex="x'= 3 \, t^{2} x^{2} + 3 \, x y \hspace{2em} x( 1 )= -1"> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y'=%20-t%5E%7B2%7D%20y%5E%7B2%7D%20+%203%20%5C,%20x%5E%7B2%7D%20y%20-%201%20%5Chspace%7B2em%7D%20y(%201%20)=%200" alt="y'= -t^{2} y^{2} + 3 \, x^{2} y - 1 \hspace{2em} y( 1 )= 0" title="y'= -t^{2} y^{2} + 3 \, x^{2} y - 1 \hspace{2em} y( 1 )= 0" data-latex="y'= -t^{2} y^{2} + 3 \, x^{2} y - 1 \hspace{2em} y( 1 )= 0"> </p> </div> </mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> <itemfeedback ident="general_fb"> <flow_mat> <material> <mattextxml> <div class="exercise-answer"> <h4>Partial Answer:</h4> <ul> <li><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x( 1.1 )\approx -0.700" alt="x( 1.1 )\approx -0.700" title="x( 1.1 )\approx -0.700" data-latex="x( 1.1 )\approx -0.700"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y( 1.1 )\approx -0.100" alt="y( 1.1 )\approx -0.100" title="y( 1.1 )\approx -0.100" data-latex="y( 1.1 )\approx -0.100"/></li> <li><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x( 1.2 )\approx -0.502" alt="x( 1.2 )\approx -0.502" title="x( 1.2 )\approx -0.502" data-latex="x( 1.2 )\approx -0.502"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y( 1.2 )\approx -0.216" alt="y( 1.2 )\approx -0.216" title="y( 1.2 )\approx -0.216" data-latex="y( 1.2 )\approx -0.216"/></li> </ul> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-answer"> <h4>Partial Answer:</h4> <ul> <li> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x(%201.1%20)%5Capprox%20-0.700" alt="x( 1.1 )\approx -0.700" title="x( 1.1 )\approx -0.700" data-latex="x( 1.1 )\approx -0.700"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y(%201.1%20)%5Capprox%20-0.100" alt="y( 1.1 )\approx -0.100" title="y( 1.1 )\approx -0.100" data-latex="y( 1.1 )\approx -0.100"> </li> <li> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x(%201.2%20)%5Capprox%20-0.502" alt="x( 1.2 )\approx -0.502" title="x( 1.2 )\approx -0.502" data-latex="x( 1.2 )\approx -0.502"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y(%201.2%20)%5Capprox%20-0.216" alt="y( 1.2 )\approx -0.216" title="y( 1.2 )\approx -0.216" data-latex="y( 1.2 )\approx -0.216"> </li> </ul> </div> </mattext> </material> </flow_mat> </itemfeedback> </item>