<item ident="N2-4511" title="N2 | Euler's method for approximating IVP solutions | ver. 4511"> <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>question_type</fieldlabel> <fieldentry>essay_question</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> <presentation> <material> <mattextxml> <div class="exercise-statement"> <p> <strong>N2.</strong> </p> <p> Use Euler's method with <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?h= 0.10" alt="h= 0.10" title="h= 0.10" data-latex="h= 0.10"/> to approximate <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x( 0.20 )" alt="x( 0.20 )" title="x( 0.20 )" data-latex="x( 0.20 )"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y( 0.20 )" alt="y( 0.20 )" title="y( 0.20 )" data-latex="y( 0.20 )"/> given the following system of IVPs. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x'= 2 \, x^{2} y + 4 \, t x - 1 \hspace{2em} x( 0 )= 0" alt="x'= 2 \, x^{2} y + 4 \, t x - 1 \hspace{2em} x( 0 )= 0" title="x'= 2 \, x^{2} y + 4 \, t x - 1 \hspace{2em} x( 0 )= 0" data-latex="x'= 2 \, x^{2} y + 4 \, t x - 1 \hspace{2em} x( 0 )= 0"/> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y'= -x^{2} y^{2} + 2 \, t y^{2} - 3 \hspace{2em} y( 0 )= 0" alt="y'= -x^{2} y^{2} + 2 \, t y^{2} - 3 \hspace{2em} y( 0 )= 0" title="y'= -x^{2} y^{2} + 2 \, t y^{2} - 3 \hspace{2em} y( 0 )= 0" data-latex="y'= -x^{2} y^{2} + 2 \, t y^{2} - 3 \hspace{2em} y( 0 )= 0"/> </p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-statement"> <p> <strong>N2.</strong> </p> <p> Use Euler's method with <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?h=%200.10" alt="h= 0.10" title="h= 0.10" data-latex="h= 0.10"> to approximate <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x(%200.20%20)" alt="x( 0.20 )" title="x( 0.20 )" data-latex="x( 0.20 )"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y(%200.20%20)" alt="y( 0.20 )" title="y( 0.20 )" data-latex="y( 0.20 )"> given the following system of IVPs. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x'=%202%20%5C,%20x%5E%7B2%7D%20y%20+%204%20%5C,%20t%20x%20-%201%20%5Chspace%7B2em%7D%20x(%200%20)=%200" alt="x'= 2 \, x^{2} y + 4 \, t x - 1 \hspace{2em} x( 0 )= 0" title="x'= 2 \, x^{2} y + 4 \, t x - 1 \hspace{2em} x( 0 )= 0" data-latex="x'= 2 \, x^{2} y + 4 \, t x - 1 \hspace{2em} x( 0 )= 0"> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y'=%20-x%5E%7B2%7D%20y%5E%7B2%7D%20+%202%20%5C,%20t%20y%5E%7B2%7D%20-%203%20%5Chspace%7B2em%7D%20y(%200%20)=%200" alt="y'= -x^{2} y^{2} + 2 \, t y^{2} - 3 \hspace{2em} y( 0 )= 0" title="y'= -x^{2} y^{2} + 2 \, t y^{2} - 3 \hspace{2em} y( 0 )= 0" data-latex="y'= -x^{2} y^{2} + 2 \, t y^{2} - 3 \hspace{2em} y( 0 )= 0"> </p> </div> </mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> <itemfeedback ident="general_fb"> <flow_mat> <material> <mattextxml> <div class="exercise-answer"> <h4>Partial Answer:</h4> <ul> <li><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x( 0.10 )\approx -0.100" alt="x( 0.10 )\approx -0.100" title="x( 0.10 )\approx -0.100" data-latex="x( 0.10 )\approx -0.100"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y( 0.10 )\approx -0.300" alt="y( 0.10 )\approx -0.300" title="y( 0.10 )\approx -0.300" data-latex="y( 0.10 )\approx -0.300"/></li> <li><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x( 0.20 )\approx -0.205" alt="x( 0.20 )\approx -0.205" title="x( 0.20 )\approx -0.205" data-latex="x( 0.20 )\approx -0.205"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y( 0.20 )\approx -0.598" alt="y( 0.20 )\approx -0.598" title="y( 0.20 )\approx -0.598" data-latex="y( 0.20 )\approx -0.598"/></li> </ul> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-answer"> <h4>Partial Answer:</h4> <ul> <li> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x(%200.10%20)%5Capprox%20-0.100" alt="x( 0.10 )\approx -0.100" title="x( 0.10 )\approx -0.100" data-latex="x( 0.10 )\approx -0.100"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y(%200.10%20)%5Capprox%20-0.300" alt="y( 0.10 )\approx -0.300" title="y( 0.10 )\approx -0.300" data-latex="y( 0.10 )\approx -0.300"> </li> <li> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?x(%200.20%20)%5Capprox%20-0.205" alt="x( 0.20 )\approx -0.205" title="x( 0.20 )\approx -0.205" data-latex="x( 0.20 )\approx -0.205"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y(%200.20%20)%5Capprox%20-0.598" alt="y( 0.20 )\approx -0.598" title="y( 0.20 )\approx -0.598" data-latex="y( 0.20 )\approx -0.598"> </li> </ul> </div> </mattext> </material> </flow_mat> </itemfeedback> </item>