Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
20865 views
<item ident="X3-9394" title="X3 | Existence/uniqueness theorem for first-order IVPs | ver. 9394">
  <itemmetadata>
    <qtimetadata>
      <qtimetadatafield>
        <fieldlabel>question_type</fieldlabel>
        <fieldentry>essay_question</fieldentry>
      </qtimetadatafield>
    </qtimetadata>
  </itemmetadata>
  <presentation>
    <material>
      <mattextxml>
        <div class="exercise-statement">
          <p>
            <strong>X3.</strong>
          </p>
          <p> Explain what the Existence and Uniqueness Theorem for First Order IVPs guarantees about the existence and uniqueness of solutions for the following IVP. </p>
          <p style="text-align:center;">
            <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y'= 6 \, {\left(5 \, t + 3 \, {y} + 31\right)}^{\frac{2}{3}} \hspace{2em} x( -5 )= -2" alt="y'= 6 \, {\left(5 \, t + 3 \, {y} + 31\right)}^{\frac{2}{3}} \hspace{2em} x( -5 )= -2" title="y'= 6 \, {\left(5 \, t + 3 \, {y} + 31\right)}^{\frac{2}{3}} \hspace{2em} x( -5 )= -2" data-latex="y'= 6 \, {\left(5 \, t + 3 \, {y} + 31\right)}^{\frac{2}{3}} \hspace{2em} x( -5 )= -2"/>
          </p>
        </div>
      </mattextxml>
      <mattext texttype="text/html">&lt;div class="exercise-statement"&gt;
  &lt;p&gt;
    &lt;strong&gt;X3.&lt;/strong&gt;
  &lt;/p&gt;
  &lt;p&gt; Explain what the Existence and Uniqueness Theorem for First Order IVPs guarantees about the existence and uniqueness of solutions for the following IVP. &lt;/p&gt;
  &lt;p style="text-align:center;"&gt;
    &lt;img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y'=%206%20%5C,%20%7B%5Cleft(5%20%5C,%20t%20+%203%20%5C,%20%7By%7D%20+%2031%5Cright)%7D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%20%5Chspace%7B2em%7D%20x(%20-5%20)=%20-2" alt="y'= 6 \, {\left(5 \, t + 3 \, {y} + 31\right)}^{\frac{2}{3}} \hspace{2em} x( -5 )= -2" title="y'= 6 \, {\left(5 \, t + 3 \, {y} + 31\right)}^{\frac{2}{3}} \hspace{2em} x( -5 )= -2" data-latex="y'= 6 \, {\left(5 \, t + 3 \, {y} + 31\right)}^{\frac{2}{3}} \hspace{2em} x( -5 )= -2"&gt;
  &lt;/p&gt;
&lt;/div&gt;

</mattext>
    </material>
    <response_str ident="response1" rcardinality="Single">
      <render_fib>
        <response_label ident="answer1" rshuffle="No"/>
      </render_fib>
    </response_str>
  </presentation>
  <itemfeedback ident="general_fb">
    <flow_mat>
      <material>
        <mattextxml>
          <div class="exercise-answer">
            <h4>Partial Answer:</h4>
            <p><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?F(t,y)= 6 \, {\left(5 \, t + 3 \, {y} + 31\right)}^{\frac{2}{3}}" alt="F(t,y)= 6 \, {\left(5 \, t + 3 \, {y} + 31\right)}^{\frac{2}{3}}" title="F(t,y)= 6 \, {\left(5 \, t + 3 \, {y} + 31\right)}^{\frac{2}{3}}" data-latex="F(t,y)= 6 \, {\left(5 \, t + 3 \, {y} + 31\right)}^{\frac{2}{3}}"/> is continuous at and nearby the initial value so a solution exists for a nearby interval. </p>
            <p><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?F_y= \frac{12}{{\left(5 \, t + 3 \, {y} + 31\right)}^{\frac{1}{3}}}" alt="F_y= \frac{12}{{\left(5 \, t + 3 \, {y} + 31\right)}^{\frac{1}{3}}}" title="F_y= \frac{12}{{\left(5 \, t + 3 \, {y} + 31\right)}^{\frac{1}{3}}}" data-latex="F_y= \frac{12}{{\left(5 \, t + 3 \, {y} + 31\right)}^{\frac{1}{3}}}"/> is not continous (or even defined) at the initial value so the guaranteed solution may not be unique. </p>
          </div>
        </mattextxml>
        <mattext texttype="text/html">&lt;div class="exercise-answer"&gt;
  &lt;h4&gt;Partial Answer:&lt;/h4&gt;
  &lt;p&gt;&lt;img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?F(t,y)=%206%20%5C,%20%7B%5Cleft(5%20%5C,%20t%20+%203%20%5C,%20%7By%7D%20+%2031%5Cright)%7D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D" alt="F(t,y)= 6 \, {\left(5 \, t + 3 \, {y} + 31\right)}^{\frac{2}{3}}" title="F(t,y)= 6 \, {\left(5 \, t + 3 \, {y} + 31\right)}^{\frac{2}{3}}" data-latex="F(t,y)= 6 \, {\left(5 \, t + 3 \, {y} + 31\right)}^{\frac{2}{3}}"&gt; is continuous at and nearby the initial value so a solution exists for a nearby interval. &lt;/p&gt;
  &lt;p&gt;&lt;img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?F_y=%20%5Cfrac%7B12%7D%7B%7B%5Cleft(5%20%5C,%20t%20+%203%20%5C,%20%7By%7D%20+%2031%5Cright)%7D%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D" alt="F_y= \frac{12}{{\left(5 \, t + 3 \, {y} + 31\right)}^{\frac{1}{3}}}" title="F_y= \frac{12}{{\left(5 \, t + 3 \, {y} + 31\right)}^{\frac{1}{3}}}" data-latex="F_y= \frac{12}{{\left(5 \, t + 3 \, {y} + 31\right)}^{\frac{1}{3}}}"&gt; is not continous (or even defined) at the initial value so the guaranteed solution may not be unique. &lt;/p&gt;
&lt;/div&gt;

</mattext>
      </material>
    </flow_mat>
  </itemfeedback>
</item>