Kernel: SageMath 9.1
In [68]:
Out[68]:
Data XML
-----------
<data>
<ode> 29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''} </ode>
<ode_sol> {y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right) </ode_sol>
</data>
HTML source
-----------
<div class="exercise">
<div class="exercise-statement">
<p>Explain how to find the general solution to the given ODE.</p>
<p>\[ 29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''} \]</p>
</div>
<div class="exercise-answer">
<p>
<b>Answer:</b>
</p>
<p>\[ {y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right) \]</p>
</div>
</div>
LaTeX source
------------
\begin{exerciseStatement}
Explain how to find the general solution to the given ODE.
\[ 29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''} \]
\end{exerciseStatement}
\begin{exerciseAnswer}
\[ {y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right) \]
\end{exerciseAnswer}
QTI source
------------
<item ident="C5-9060" title="C5 | C5 Title | ver. 9060">
<itemmetadata>
<qtimetadata>
<qtimetadatafield>
<fieldlabel>question_type</fieldlabel>
<fieldentry>essay_question</fieldentry>
</qtimetadatafield>
</qtimetadata>
</itemmetadata>
<presentation>
<material>
<mattextxml>
<div class="exercise-statement">
<p>
<strong>C5.</strong>
</p>
<p>Explain how to find the general solution to the given ODE.</p>
<p style="text-align:center;">
<img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''}" alt="29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''}" title="29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''}" data-latex="29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''}"/>
</p>
</div>
</mattextxml>
<mattext texttype="text/html"><div class="exercise-statement">
<p>
<strong>C5.</strong>
</p>
<p>Explain how to find the general solution to the given ODE.</p>
<p style="text-align:center;">
<img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?29%20%5C,%20%5Ccos%5Cleft(5%20%5C,%20t%5Cright)%20=%20-4%20%5C,%20%7By%7D%20+%20%7By''%7D" alt="29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''}" title="29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''}" data-latex="29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''}">
</p>
</div>
</mattext>
</material>
<response_str ident="response1" rcardinality="Single">
<render_fib>
<response_label ident="answer1" rshuffle="No"/>
</render_fib>
</response_str>
</presentation>
<itemfeedback ident="general_fb">
<flow_mat>
<material>
<mattextxml>
<div class="exercise-answer">
<h4>Partial Answer:</h4>
<p style="text-align:center;">
<img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?{y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right)" alt="{y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right)" title="{y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right)" data-latex="{y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right)"/>
</p>
</div>
</mattextxml>
<mattext texttype="text/html"><div class="exercise-answer">
<h4>Partial Answer:</h4>
<p style="text-align:center;">
<img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?%7By%7D%20=%20k_%7B2%7D%20e%5E%7B%5Cleft(2%20%5C,%20t%5Cright)%7D%20+%20k_%7B1%7D%20e%5E%7B%5Cleft(-2%20%5C,%20t%5Cright)%7D%20-%20%5Ccos%5Cleft(5%20%5C,%20t%5Cright)" alt="{y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right)" title="{y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right)" data-latex="{y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right)">
</p>
</div>
</mattext>
</material>
</flow_mat>
</itemfeedback>
</item>
PreTeXt source
------------
<exercise masterit-seed="9060" masterit-slug="C5" masterit-name="C5 Title">
<statement>
<p>Explain how to find the general solution to the given ODE.</p>
<me> 29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''} </me>
</statement>
<answer>
<me> {y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right) </me>
</answer>
</exercise>
In [0]: