Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
20865 views
Kernel: SageMath 9.1
# path to bank containing __bank__.xml and *.sage/*.ptx files library = "clontz-diff-eq" # objective in bank to preview: {objective}.sage/.ptx objective = "C5" # loads and displays an example generated exercise from IPython.core.display import display, HTML oldwd=os.getcwd();os.chdir("..");load("main.sage");os.chdir(oldwd) oldwd=os.getcwd();os.chdir(library) load(f"{objective}.sage") with open(f"{objective}.ptx",'r') as template_file: template = template_file.read() os.chdir(oldwd) exercise = Exercise( name=objective+" Title", slug=objective, generator=generator, template=template ) display(HTML(exercise.html())) exercise.preview()
Data XML ----------- <data> <ode> 29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''} </ode> <ode_sol> {y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right) </ode_sol> </data> HTML source ----------- <div class="exercise"> <div class="exercise-statement"> <p>Explain how to find the general solution to the given ODE.</p> <p>\[ 29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''} \]</p> </div> <div class="exercise-answer"> <p> <b>Answer:</b> </p> <p>\[ {y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right) \]</p> </div> </div> LaTeX source ------------ \begin{exerciseStatement} Explain how to find the general solution to the given ODE. \[ 29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''} \] \end{exerciseStatement} \begin{exerciseAnswer} \[ {y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right) \] \end{exerciseAnswer} QTI source ------------ <item ident="C5-9060" title="C5 | C5 Title | ver. 9060"> <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>question_type</fieldlabel> <fieldentry>essay_question</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> <presentation> <material> <mattextxml> <div class="exercise-statement"> <p> <strong>C5.</strong> </p> <p>Explain how to find the general solution to the given ODE.</p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''}" alt="29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''}" title="29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''}" data-latex="29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''}"/> </p> </div> </mattextxml> <mattext texttype="text/html">&lt;div class="exercise-statement"&gt; &lt;p&gt; &lt;strong&gt;C5.&lt;/strong&gt; &lt;/p&gt; &lt;p&gt;Explain how to find the general solution to the given ODE.&lt;/p&gt; &lt;p style="text-align:center;"&gt; &lt;img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?29%20%5C,%20%5Ccos%5Cleft(5%20%5C,%20t%5Cright)%20=%20-4%20%5C,%20%7By%7D%20+%20%7By''%7D" alt="29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''}" title="29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''}" data-latex="29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''}"&gt; &lt;/p&gt; &lt;/div&gt; </mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> <itemfeedback ident="general_fb"> <flow_mat> <material> <mattextxml> <div class="exercise-answer"> <h4>Partial Answer:</h4> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?{y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right)" alt="{y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right)" title="{y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right)" data-latex="{y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right)"/> </p> </div> </mattextxml> <mattext texttype="text/html">&lt;div class="exercise-answer"&gt; &lt;h4&gt;Partial Answer:&lt;/h4&gt; &lt;p style="text-align:center;"&gt; &lt;img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?%7By%7D%20=%20k_%7B2%7D%20e%5E%7B%5Cleft(2%20%5C,%20t%5Cright)%7D%20+%20k_%7B1%7D%20e%5E%7B%5Cleft(-2%20%5C,%20t%5Cright)%7D%20-%20%5Ccos%5Cleft(5%20%5C,%20t%5Cright)" alt="{y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right)" title="{y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right)" data-latex="{y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right)"&gt; &lt;/p&gt; &lt;/div&gt; </mattext> </material> </flow_mat> </itemfeedback> </item> PreTeXt source ------------ <exercise masterit-seed="9060" masterit-slug="C5" masterit-name="C5 Title"> <statement> <p>Explain how to find the general solution to the given ODE.</p> <me> 29 \, \cos\left(5 \, t\right) = -4 \, {y} + {y''} </me> </statement> <answer> <me> {y} = k_{2} e^{\left(2 \, t\right)} + k_{1} e^{\left(-2 \, t\right)} - \cos\left(5 \, t\right) </me> </answer> </exercise>