Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
20865 views
1
<exercise>
2
<statement>
3
Let <m>T:\mathbb{R}^<xsl:value-of select="columns"/> \to \mathbb{R}^<xsl:value-of select="rows"/></m> be the linear transformation given by
4
<me>T\left( <xsl:value-of select="varvector"/> \right) = <xsl:value-of select="Tvar"/>.</me>
5
<ol>
6
<li>Explain how to find the image of <m>T</m> and the kernel of <m>T</m>.</li>
7
<li>Explain how to find a basis of the image of <m>T</m> and a basis of the kernel of <m>T</m>.</li>
8
<li>Explain how to find the rank and nullity of <m>T</m>, and why the rank-nullity theorem holds for <m>T</m>.</li>
9
</ol>
10
</statement>
11
<answer>
12
<ol>
13
<li>
14
<me>\operatorname{Im}\ T = \operatorname{span}\ <xsl:value-of select="imagebasis"/></me>
15
<me>\operatorname{ker}\ T = <xsl:value-of select="kernel"/></me>
16
</li>
17
<li>
18
A basis of <m>\operatorname{Im}\ T</m> is <m><xsl:value-of select="imagebasis"/></m>.
19
A basis of <m>\operatorname{ker}\ T</m> is <m><xsl:value-of select="kernelbasis"/></m>
20
</li>
21
<li>
22
The rank of <m>T</m> is <m><xsl:value-of select="rank"/></m>, the nullity of <m>T</m> is <m><xsl:value-of select="nullity"/></m>,
23
and the dimension of the domain of <m>T</m> is <m><xsl:value-of select="columns"/></m>. The rank-nullity theorem asserts that
24
<m><xsl:value-of select="rank"/>+<xsl:value-of select="nullity"/>=<xsl:value-of select="columns"/></m>, which we see to be true.
25
</li>
26
</ol>
27
</answer>
28
</exercise>
29