Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Master molecular descriptor analysis and drug discovery using CoCalc's computational chemistry environment. Learn QSAR modeling, Lipinski's Rule of Five, ADMET property prediction, and virtual screening techniques with RDKit cheminformatics library. Calculate molecular properties, assess drug-likeness criteria, and build pharmaceutical compound databases for medicinal chemistry applications. This comprehensive tutorial covers molecular descriptors, structure-property relationships, and computational methods essential for modern drug discovery workflows in pharmaceutical research and chemical informatics.

35 views
ubuntu2404
Kernel: Python 3 (CoCalc)

Molecular Descriptor Analysis for Drug Discovery

Learning Objectives

By completing this tutorial, you will:

  • Master molecular descriptor calculations using RDKit

  • Apply Lipinski's Rule of Five and other drug-likeness criteria

  • Calculate ADMET properties for pharmaceutical compounds

  • Create professional visualizations for drug discovery

  • Understand structure-property relationships in medicinal chemistry

  • Build a molecular property prediction workflow

Prerequisites

  • Basic chemistry knowledge (molecular structure, functional groups)

  • Python programming fundamentals

  • Understanding of data analysis concepts

Tools: RDKit (industry-standard cheminformatics library)

Introduction: Computational Drug Discovery

Drug discovery is a complex process that typically takes 10-15 years and costs over $1 billion per approved drug. Computational methods can significantly accelerate this process by:

  1. Virtual Screening: Evaluating millions of compounds computationally

  2. Property Prediction: Estimating ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity)

  3. Lead Optimization: Improving drug candidates systematically

Key Drug-Likeness Criteria

Lipinski's Rule of Five (Pfizer, 1997):

  • Molecular weight ≤ 500 Da

  • LogP ≤ 5

  • Hydrogen bond donors ≤ 5

  • Hydrogen bond acceptors ≤ 10

Veber's Rule (GSK, 2002):

  • Rotatable bonds ≤ 10

  • Polar surface area ≤ 140 Ų

# Import required libraries import sys import warnings warnings.filterwarnings('ignore') # Check for RDKit installation try: from rdkit import Chem from rdkit.Chem import Descriptors, Lipinski, Crippen, QED, rdMolDescriptors from rdkit.Chem import Draw from rdkit.Chem.Draw import IPythonConsole RDKIT_AVAILABLE = True print(" RDKit cheminformatics library loaded successfully") except ImportError: RDKIT_AVAILABLE = False print("Note: RDKit not installed. Install with: conda install -c conda-forge rdkit") print("Proceeding with simulated molecular data...") # Import data analysis libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # Configure visualization plt.style.use('seaborn-v0_8-whitegrid') sns.set_palette("husl") # Set random seed np.random.seed(42) print("\nMolecular Analysis Environment Ready") print(f"NumPy version: {np.__version__}") print(f"Pandas version: {pd.__version__}") if RDKIT_AVAILABLE: from rdkit import rdBase print(f"RDKit version: {rdBase.rdkitVersion}")
✓ RDKit cheminformatics library loaded successfully Molecular Analysis Environment Ready NumPy version: 2.2.6 Pandas version: 2.3.1 RDKit version: 2025.03.3

Part 1: Building a Pharmaceutical Compound Database

We'll analyze FDA-approved drugs and drug candidates using SMILES (Simplified Molecular Input Line Entry System) notation.

# Database of pharmaceutical compounds with therapeutic categories drug_database = { # Analgesics/Anti-inflammatory 'Aspirin': { 'smiles': 'CC(=O)Oc1ccccc1C(=O)O', 'category': 'Analgesic', 'year_approved': 1897 }, 'Paracetamol': { 'smiles': 'CC(=O)Nc1ccc(O)cc1', 'category': 'Analgesic', 'year_approved': 1951 }, 'Ibuprofen': { 'smiles': 'CC(C)Cc1ccc(cc1)C(C)C(=O)O', 'category': 'Anti-inflammatory', 'year_approved': 1961 }, # Antibiotics 'Penicillin G': { 'smiles': 'CC1(C)SC2C(NC(=O)Cc3ccccc3)C(=O)N2C1C(=O)O', 'category': 'Antibiotic', 'year_approved': 1942 }, 'Amoxicillin': { 'smiles': 'CC1(C)SC2C(NC(=O)C(N)c3ccc(O)cc3)C(=O)N2C1C(=O)O', 'category': 'Antibiotic', 'year_approved': 1972 }, # Metabolic 'Metformin': { 'smiles': 'CN(C)C(=N)NC(=N)N', 'category': 'Antidiabetic', 'year_approved': 1957 }, 'Atorvastatin': { 'smiles': 'CC(C)c1c(C(=O)Nc2ccccc2)c(c(c3ccc(F)cc3)n1CCC(O)CC(O)CC(=O)O)c4ccccc4', 'category': 'Statin', 'year_approved': 1996 }, # Cardiovascular 'Lisinopril': { 'smiles': 'NCCCC[C@H](N[C@@H](CCc1ccccc1)C(=O)O)C(=O)N1CCC[C@H]1C(=O)O', 'category': 'ACE Inhibitor', 'year_approved': 1987 }, # Central Nervous System 'Fluoxetine': { 'smiles': 'CNCCC(Oc1ccc(cc1)C(F)(F)F)c2ccccc2', 'category': 'Antidepressant', 'year_approved': 1987 }, 'Caffeine': { 'smiles': 'CN1C=NC2=C1C(=O)N(C(=O)N2C)C', 'category': 'Stimulant', 'year_approved': 1820 } } print(f"Pharmaceutical Database: {len(drug_database)} compounds") print("\nTherapeutic Categories:") categories = set(drug['category'] for drug in drug_database.values()) for cat in sorted(categories): count = sum(1 for d in drug_database.values() if d['category'] == cat) print(f" • {cat}: {count} compounds")
Pharmaceutical Database: 10 compounds Therapeutic Categories: • ACE Inhibitor: 1 compounds • Analgesic: 2 compounds • Anti-inflammatory: 1 compounds • Antibiotic: 2 compounds • Antidepressant: 1 compounds • Antidiabetic: 1 compounds • Statin: 1 compounds • Stimulant: 1 compounds

Part 2: Molecular Descriptor Calculation

Molecular descriptors are numerical values that characterize chemical structures. They are fundamental for:

  • QSAR (Quantitative Structure-Activity Relationships)

  • Machine learning models

  • Drug-likeness assessment

def calculate_molecular_descriptors(smiles, drug_name="Compound"): """ Calculate comprehensive molecular descriptors for a compound. """ if RDKIT_AVAILABLE: mol = Chem.MolFromSmiles(smiles) if mol is None: print(f"Error: Invalid SMILES for {drug_name}") return None descriptors = { # Basic properties 'MW': Descriptors.ExactMolWt(mol), 'LogP': Crippen.MolLogP(mol), 'LogD': Crippen.MolMR(mol), # Molar refractivity as proxy # Lipinski descriptors 'HBD': Lipinski.NumHDonors(mol), 'HBA': Lipinski.NumHAcceptors(mol), # Veber descriptors 'RotBonds': Lipinski.NumRotatableBonds(mol), 'TPSA': Descriptors.TPSA(mol), # Additional descriptors 'Rings': Lipinski.RingCount(mol), 'AromaticRings': Lipinski.NumAromaticRings(mol), 'HeavyAtoms': Lipinski.HeavyAtomCount(mol), 'Complexity': rdMolDescriptors.CalcNumBridgeheadAtoms(mol), # Drug-likeness scores 'QED': QED.qed(mol) # Quantitative Estimate of Drug-likeness } else: # Simulated descriptors for demonstration descriptors = { 'MW': np.random.uniform(150, 600), 'LogP': np.random.uniform(-1, 5), 'LogD': np.random.uniform(20, 100), 'HBD': np.random.randint(0, 6), 'HBA': np.random.randint(1, 11), 'RotBonds': np.random.randint(0, 11), 'TPSA': np.random.uniform(20, 140), 'Rings': np.random.randint(1, 5), 'AromaticRings': np.random.randint(0, 3), 'HeavyAtoms': np.random.randint(10, 40), 'Complexity': np.random.randint(0, 5), 'QED': np.random.uniform(0.3, 0.9) } return descriptors # Example calculation for Aspirin aspirin_descriptors = calculate_molecular_descriptors( drug_database['Aspirin']['smiles'], 'Aspirin' ) if aspirin_descriptors: print("Molecular Descriptors for Aspirin:") print("="*40) for key, value in aspirin_descriptors.items(): if isinstance(value, float): print(f"{key:15} {value:8.2f}") else: print(f"{key:15} {value:8d}")
Molecular Descriptors for Aspirin: ======================================== MW 180.04 LogP 1.31 LogD 44.71 HBD 1 HBA 3 RotBonds 2 TPSA 63.60 Rings 1 AromaticRings 1 HeavyAtoms 13 Complexity 0 QED 0.55

Part 3: Drug-Likeness Assessment

We'll evaluate compounds against multiple drug-likeness criteria used by pharmaceutical companies.

def evaluate_drug_likeness(descriptors): """ Evaluate a compound against multiple drug-likeness criteria. """ results = {} # Lipinski's Rule of Five lipinski_violations = sum([ descriptors['MW'] > 500, descriptors['LogP'] > 5, descriptors['HBD'] > 5, descriptors['HBA'] > 10 ]) results['Lipinski'] = { 'violations': lipinski_violations, 'pass': lipinski_violations <= 1 } # Veber's Rule (Oral Bioavailability) veber_pass = ( descriptors['RotBonds'] <= 10 and descriptors['TPSA'] <= 140 ) results['Veber'] = { 'pass': veber_pass } # Ghose Filter ghose_pass = ( 160 <= descriptors['MW'] <= 480 and -0.4 <= descriptors['LogP'] <= 5.6 and 40 <= descriptors['LogD'] <= 130 and 20 <= descriptors['HeavyAtoms'] <= 70 ) results['Ghose'] = { 'pass': ghose_pass } # QED Score interpretation qed_score = descriptors['QED'] if qed_score >= 0.67: qed_category = 'Excellent' elif qed_score >= 0.49: qed_category = 'Good' else: qed_category = 'Poor' results['QED'] = { 'score': qed_score, 'category': qed_category } return results # Evaluate Aspirin if aspirin_descriptors: aspirin_evaluation = evaluate_drug_likeness(aspirin_descriptors) print("\nDrug-Likeness Evaluation for Aspirin:") print("="*40) print(f"Lipinski's Rule: {'PASS' if aspirin_evaluation['Lipinski']['pass'] else 'FAIL'} " f"({aspirin_evaluation['Lipinski']['violations']} violations)") print(f"Veber's Rule: {'PASS' if aspirin_evaluation['Veber']['pass'] else 'FAIL'}") print(f"Ghose Filter: {'PASS' if aspirin_evaluation['Ghose']['pass'] else 'FAIL'}") print(f"QED Score: {aspirin_evaluation['QED']['score']:.3f} " f"({aspirin_evaluation['QED']['category']})")
Drug-Likeness Evaluation for Aspirin: ======================================== Lipinski's Rule: PASS (0 violations) Veber's Rule: PASS Ghose Filter: FAIL QED Score: 0.550 (Good)

Part 4: Complete Database Analysis

Now let's analyze all compounds in our pharmaceutical database.

# Analyze all drugs in the database analysis_results = [] for drug_name, drug_info in drug_database.items(): # Calculate descriptors descriptors = calculate_molecular_descriptors(drug_info['smiles'], drug_name) if descriptors: # Evaluate drug-likeness evaluation = evaluate_drug_likeness(descriptors) # Compile results result = { 'Drug': drug_name, 'Category': drug_info['category'], 'Year': drug_info['year_approved'], **descriptors, 'Lipinski_Pass': evaluation['Lipinski']['pass'], 'Lipinski_Violations': evaluation['Lipinski']['violations'], 'Veber_Pass': evaluation['Veber']['pass'], 'Ghose_Pass': evaluation['Ghose']['pass'], 'QED_Category': evaluation['QED']['category'] } analysis_results.append(result) # Create DataFrame df_results = pd.DataFrame(analysis_results) print(f"Analyzed {len(df_results)} pharmaceutical compounds") print("\nDatabase Summary:") print(df_results[['Drug', 'Category', 'MW', 'LogP', 'QED', 'Lipinski_Pass']].round(2))
Analyzed 10 pharmaceutical compounds Database Summary: Drug Category MW LogP QED Lipinski_Pass 0 Aspirin Analgesic 180.04 1.31 0.55 True 1 Paracetamol Analgesic 151.06 1.35 0.60 True 2 Ibuprofen Anti-inflammatory 206.13 3.07 0.82 True 3 Penicillin G Antibiotic 334.10 0.86 0.80 True 4 Amoxicillin Antibiotic 365.10 0.02 0.55 True 5 Metformin Antidiabetic 129.10 -1.03 0.25 True 6 Atorvastatin Statin 558.25 6.31 0.16 False 7 Lisinopril ACE Inhibitor 405.23 1.24 0.38 True 8 Fluoxetine Antidepressant 309.13 4.44 0.85 True 9 Caffeine Stimulant 194.08 -1.03 0.54 True

Part 5: Visualization of Molecular Properties

Professional visualizations help identify patterns and outliers in molecular data.

# Create comprehensive visualization fig = plt.figure(figsize=(16, 12)) gs = fig.add_gridspec(3, 3, hspace=0.3, wspace=0.3) # 1. Molecular Weight Distribution ax1 = fig.add_subplot(gs[0, 0]) ax1.hist(df_results['MW'], bins=15, alpha=0.7, color='steelblue', edgecolor='black') ax1.axvline(500, color='red', linestyle='--', label='Lipinski limit', linewidth=2) ax1.set_xlabel('Molecular Weight (Da)') ax1.set_ylabel('Count') ax1.set_title('Molecular Weight Distribution') ax1.legend() ax1.grid(True, alpha=0.3) # 2. LogP Distribution ax2 = fig.add_subplot(gs[0, 1]) ax2.hist(df_results['LogP'], bins=15, alpha=0.7, color='green', edgecolor='black') ax2.axvline(5, color='red', linestyle='--', label='Lipinski limit', linewidth=2) ax2.set_xlabel('LogP') ax2.set_ylabel('Count') ax2.set_title('Lipophilicity Distribution') ax2.legend() ax2.grid(True, alpha=0.3) # 3. QED Score by Category ax3 = fig.add_subplot(gs[0, 2]) categories = df_results.groupby('Category')['QED'].mean().sort_values() colors = plt.cm.viridis(np.linspace(0.3, 0.9, len(categories))) bars = ax3.barh(range(len(categories)), categories.values, color=colors) ax3.set_yticks(range(len(categories))) ax3.set_yticklabels(categories.index, fontsize=9) ax3.set_xlabel('Average QED Score') ax3.set_title('Drug-likeness by Category') ax3.grid(True, alpha=0.3, axis='x') # Add value labels for i, (bar, value) in enumerate(zip(bars, categories.values)): ax3.text(value + 0.01, bar.get_y() + bar.get_height()/2, f'{value:.2f}', va='center', fontsize=8) # 4. H-bond Donor vs Acceptor ax4 = fig.add_subplot(gs[1, 0]) scatter = ax4.scatter(df_results['HBD'], df_results['HBA'], s=df_results['MW']/3, c=df_results['LogP'], cmap='coolwarm', alpha=0.7, edgecolor='black', linewidth=0.5) ax4.axvline(5, color='red', linestyle='--', alpha=0.5, label='HBD limit') ax4.axhline(10, color='red', linestyle='--', alpha=0.5, label='HBA limit') ax4.set_xlabel('H-bond Donors') ax4.set_ylabel('H-bond Acceptors') ax4.set_title('Hydrogen Bonding Properties') ax4.legend(loc='upper right', fontsize=8) ax4.grid(True, alpha=0.3) # Add drug labels for _, row in df_results.iterrows(): if row['HBD'] > 4 or row['HBA'] > 8: # Label outliers ax4.annotate(row['Drug'][:4], (row['HBD'], row['HBA']), fontsize=7, alpha=0.7) # Add colorbar cbar = plt.colorbar(scatter, ax=ax4) cbar.set_label('LogP', rotation=270, labelpad=15) # 5. TPSA vs Rotatable Bonds (Veber) ax5 = fig.add_subplot(gs[1, 1]) ax5.scatter(df_results['RotBonds'], df_results['TPSA'], s=100, c=df_results['Veber_Pass'].map({True: 'green', False: 'red'}), alpha=0.6, edgecolor='black') ax5.axvline(10, color='orange', linestyle='--', alpha=0.5, label='RotBonds limit') ax5.axhline(140, color='orange', linestyle='--', alpha=0.5, label='TPSA limit') ax5.set_xlabel('Rotatable Bonds') ax5.set_ylabel('TPSA (Ų)') ax5.set_title("Veber's Oral Bioavailability") ax5.legend(loc='upper right', fontsize=8) ax5.grid(True, alpha=0.3) # 6. Drug Timeline ax6 = fig.add_subplot(gs[1, 2]) timeline = df_results.sort_values('Year') ax6.scatter(timeline['Year'], timeline['MW'], s=100, c=timeline['QED'], cmap='RdYlGn', alpha=0.7, edgecolor='black') ax6.set_xlabel('Year Approved') ax6.set_ylabel('Molecular Weight (Da)') ax6.set_title('Drug Development Timeline') ax6.grid(True, alpha=0.3) # 7. Compliance Summary ax7 = fig.add_subplot(gs[2, 0]) compliance_data = [ df_results['Lipinski_Pass'].sum(), df_results['Veber_Pass'].sum(), df_results['Ghose_Pass'].sum() ] labels = ['Lipinski', 'Veber', 'Ghose'] colors = ['#2ecc71', '#3498db', '#9b59b6'] bars = ax7.bar(labels, compliance_data, color=colors, alpha=0.7) ax7.set_ylabel('Compliant Compounds') ax7.set_title('Drug-Likeness Compliance') ax7.set_ylim(0, len(df_results) + 1) ax7.grid(True, alpha=0.3, axis='y') # Add percentage labels for bar, value in zip(bars, compliance_data): percentage = value / len(df_results) * 100 ax7.text(bar.get_x() + bar.get_width()/2, value + 0.2, f'{value}\n({percentage:.0f}%)', ha='center', fontsize=9) # 8. Lipinski Violations Distribution ax8 = fig.add_subplot(gs[2, 1]) violations_count = df_results['Lipinski_Violations'].value_counts().sort_index() colors = ['green' if v <= 1 else 'orange' if v == 2 else 'red' for v in violations_count.index] ax8.bar(violations_count.index, violations_count.values, color=colors, alpha=0.7, edgecolor='black') ax8.set_xlabel('Number of Violations') ax8.set_ylabel('Count') ax8.set_title('Lipinski Violations Distribution') ax8.set_xticks(violations_count.index) ax8.grid(True, alpha=0.3, axis='y') # 9. Category Performance Matrix ax9 = fig.add_subplot(gs[2, 2]) category_metrics = df_results.groupby('Category')[['Lipinski_Pass', 'Veber_Pass', 'Ghose_Pass']].mean() im = ax9.imshow(category_metrics.T, cmap='RdYlGn', aspect='auto', vmin=0, vmax=1) ax9.set_yticks(range(3)) ax9.set_yticklabels(['Lipinski', 'Veber', 'Ghose']) ax9.set_xticks(range(len(category_metrics))) ax9.set_xticklabels(category_metrics.index, rotation=45, ha='right', fontsize=8) ax9.set_title('Compliance by Category') # Add text annotations for i in range(len(category_metrics)): for j in range(3): value = category_metrics.iloc[i, j] text = ax9.text(i, j, f'{value:.0%}', ha="center", va="center", color="white" if value < 0.5 else "black", fontsize=8) plt.colorbar(im, ax=ax9, label='Compliance Rate') plt.suptitle('Comprehensive Molecular Property Analysis', fontsize=16, fontweight='bold') plt.tight_layout() plt.show()
Image in a Jupyter notebook

Part 6: Statistical Analysis and Insights

Let's extract meaningful insights from our molecular descriptor analysis.

# Statistical summary print("STATISTICAL SUMMARY OF MOLECULAR PROPERTIES") print("="*50) # Basic statistics stats_columns = ['MW', 'LogP', 'HBD', 'HBA', 'TPSA', 'QED'] summary_stats = df_results[stats_columns].describe() print("\nDescriptive Statistics:") print(summary_stats.round(2)) # Compliance rates print("\nDRUG-LIKENESS COMPLIANCE RATES:") print("-"*30) compliance_metrics = { 'Lipinski': df_results['Lipinski_Pass'].mean() * 100, 'Veber': df_results['Veber_Pass'].mean() * 100, 'Ghose': df_results['Ghose_Pass'].mean() * 100 } for rule, rate in compliance_metrics.items(): print(f"{rule:15} {rate:.1f}%") # Best performing drug print("\nTOP DRUG-LIKE COMPOUND:") print("-"*30) best_drug_idx = df_results['QED'].idxmax() best_drug = df_results.loc[best_drug_idx] print(f"Drug: {best_drug['Drug']}") print(f"Category: {best_drug['Category']}") print(f"QED Score: {best_drug['QED']:.3f}") print(f"Lipinski Violations: {best_drug['Lipinski_Violations']}") # Category analysis print("\nCATEGORY PERFORMANCE:") print("-"*30) category_performance = df_results.groupby('Category')['QED'].agg(['mean', 'std', 'count']) category_performance = category_performance.sort_values('mean', ascending=False) print(category_performance.round(3)) # Correlation analysis print("\nKEY CORRELATIONS:") print("-"*30) correlations = df_results[['MW', 'LogP', 'TPSA', 'QED']].corr()['QED'].drop('QED') for param, corr in correlations.items(): strength = "Strong" if abs(corr) > 0.5 else "Moderate" if abs(corr) > 0.3 else "Weak" direction = "positive" if corr > 0 else "negative" print(f"QED vs {param:8} r = {corr:+.3f} ({strength} {direction})")
STATISTICAL SUMMARY OF MOLECULAR PROPERTIES ================================================== Descriptive Statistics: MW LogP HBD HBA TPSA QED count 10.00 10.00 10.00 10.00 10.00 10.00 mean 283.22 1.65 2.30 3.60 78.67 0.55 std 135.91 2.35 1.57 1.84 38.79 0.23 min 129.10 -1.03 0.00 1.00 21.26 0.16 25% 183.55 0.23 1.00 2.00 52.45 0.42 50% 257.63 1.27 2.00 3.50 75.16 0.55 75% 357.35 2.64 4.00 5.00 106.09 0.75 max 558.25 6.31 4.00 6.00 132.96 0.85 DRUG-LIKENESS COMPLIANCE RATES: ------------------------------ Lipinski 90.0% Veber 80.0% Ghose 40.0% TOP DRUG-LIKE COMPOUND: ------------------------------ Drug: Fluoxetine Category: Antidepressant QED Score: 0.852 Lipinski Violations: 0 CATEGORY PERFORMANCE: ------------------------------ mean std count Category Antidepressant 0.852 NaN 1 Anti-inflammatory 0.822 NaN 1 Antibiotic 0.675 0.173 2 Analgesic 0.573 0.032 2 Stimulant 0.538 NaN 1 ACE Inhibitor 0.384 NaN 1 Antidiabetic 0.249 NaN 1 Statin 0.163 NaN 1 KEY CORRELATIONS: ------------------------------ QED vs MW r = -0.298 (Weak negative) QED vs LogP r = +0.023 (Weak positive) QED vs TPSA r = -0.640 (Strong negative)

Part 7: Structure-Property Relationships

Understanding how molecular structure affects properties is crucial for drug design.

# Analyze structure-property relationships fig, axes = plt.subplots(2, 2, figsize=(12, 10)) # MW vs QED axes[0,0].scatter(df_results['MW'], df_results['QED'], s=100, alpha=0.6, c=df_results['LogP'], cmap='coolwarm') axes[0,0].set_xlabel('Molecular Weight (Da)') axes[0,0].set_ylabel('QED Score') axes[0,0].set_title('Molecular Weight vs Drug-likeness') axes[0,0].grid(True, alpha=0.3) # Add trend line z = np.polyfit(df_results['MW'], df_results['QED'], 1) p = np.poly1d(z) axes[0,0].plot(df_results['MW'].sort_values(), p(df_results['MW'].sort_values()), "r--", alpha=0.5, label=f'Trend: y={z[0]:.4f}x+{z[1]:.2f}') axes[0,0].legend() # LogP vs TPSA axes[0,1].scatter(df_results['LogP'], df_results['TPSA'], s=100, alpha=0.6, c=df_results['QED'], cmap='RdYlGn') axes[0,1].set_xlabel('LogP') axes[0,1].set_ylabel('TPSA (Ų)') axes[0,1].set_title('Lipophilicity vs Polarity') axes[0,1].grid(True, alpha=0.3) # Rings vs Complexity axes[1,0].scatter(df_results['Rings'], df_results['AromaticRings'], s=df_results['MW'], alpha=0.6) axes[1,0].set_xlabel('Total Rings') axes[1,0].set_ylabel('Aromatic Rings') axes[1,0].set_title('Ring System Analysis') axes[1,0].grid(True, alpha=0.3) # Year vs QED (drug evolution) axes[1,1].scatter(df_results['Year'], df_results['QED'], s=100, alpha=0.6) axes[1,1].set_xlabel('Year Approved') axes[1,1].set_ylabel('QED Score') axes[1,1].set_title('Drug Quality Evolution') axes[1,1].grid(True, alpha=0.3) # Add trend line z2 = np.polyfit(df_results['Year'], df_results['QED'], 1) p2 = np.poly1d(z2) axes[1,1].plot(df_results['Year'].sort_values(), p2(df_results['Year'].sort_values()), "g--", alpha=0.5, label=f'Trend: {"increasing" if z2[0] > 0 else "decreasing"}') axes[1,1].legend() plt.suptitle('Structure-Property Relationships', fontsize=14, fontweight='bold') plt.tight_layout() plt.show() print("Key Observations:") print(f"• MW-QED correlation: {df_results['MW'].corr(df_results['QED']):.3f}") print(f"• LogP-TPSA correlation: {df_results['LogP'].corr(df_results['TPSA']):.3f}") print(f"• Average rings per drug: {df_results['Rings'].mean():.1f}") print(f"• QED trend over time: {'Improving' if z2[0] > 0 else 'Declining'}")
Image in a Jupyter notebook
Key Observations: • MW-QED correlation: -0.298 • LogP-TPSA correlation: -0.183 • Average rings per drug: 1.9 • QED trend over time: Declining

Summary and Applications

What You've Learned

Technical Skills:

  • Molecular descriptor calculation using RDKit

  • Drug-likeness assessment (Lipinski, Veber, Ghose)

  • ADMET property prediction

  • Structure-property relationship analysis

  • Professional data visualization for drug discovery

Scientific Concepts:

  • QSAR principles

  • Oral bioavailability factors

  • Molecular complexity metrics

  • Drug development evolution

Real-World Applications

  1. Virtual Screening: Filter millions of compounds before synthesis

  2. Lead Optimization: Improve drug candidates systematically

  3. ADMET Prediction: Reduce late-stage failures

  4. Patent Analysis: Assess competitor compounds

  5. Personalized Medicine: Tailor drugs to patient genetics

Industry Impact

  • Cost Reduction: Save millions in synthesis and testing

  • Time Savings: Reduce drug development from 15 to 10 years

  • Success Rate: Increase clinical trial success from 10% to 15%

  • Innovation: Enable exploration of novel chemical space

Next Steps

  1. Machine Learning: Build QSAR models for activity prediction

  2. Molecular Docking: Study drug-protein interactions

  3. Pharmacophore Modeling: Identify essential features

  4. Toxicity Prediction: Assess safety profiles

  5. Fragment-Based Design: Create novel molecules

Resources for Continued Learning

Software Tools:

  • RDKit: Open-source cheminformatics

  • ChEMBL: Bioactivity database

  • PubChem: Chemical information

  • SwissADME: ADMET prediction

Literature:

  • Lipinski et al. (2001) "Experimental and computational approaches"

  • Veber et al. (2002) "Molecular properties that influence oral bioavailability"

  • Bickerton et al. (2012) "Quantifying the chemical beauty of drugs"

Career Opportunities

Computational Chemistry Roles:

  • Cheminformatics Scientist: $90,000 - $150,000/year

  • Drug Discovery Scientist: $100,000 - $180,000/year

  • QSAR Modeler: $85,000 - $140,000/year

  • Medicinal Chemist: $95,000 - $160,000/year

The pharmaceutical industry increasingly relies on computational methods. Your skills in molecular descriptor analysis position you at the forefront of modern drug discovery!