�
ɍ�Xc @ sh d d l Te d � Z e d � Z e d � Z d d l Td e f d � � YZ d e f d � � YZ d S(
i����( t *i i i t local_Braidc B s8 e Z d Z d d � Z d d � Z d e d d � Z RS( s�
This Class contains extensions to the Braid Element class.
If you don't see this well formatted type
sage: print local_Braid.__doc__
This class has two new methods and one overwriting the corresponding methods of the class Braid.
New methods:
- __burau_matrix_wikipedia__
- __burau_matrix_unitary__
Modified:
. burau_matrix (using __burau_matrix_wikipedia__, __burau_matrix_unitary__ )
For more information type
sage: print local_Braid.__burau_matrix_wikipedia__.__doc__
sage: print local_Braid.__burau_matrix_unitary__.__doc__
sage: print local_Braid.burau_matrix.__doc__
AUTHOR
- Sebastian Oehms, Oct. 2016
t tc C ss t t � | � } | j � } | j � } t | | t � } x/| j � D]!} t | | t � } | t k r� | | | t | t f <| t k r� | | | t | t f <n | | t k r� t | | t | f <q� n | t k ra| t | | t | t f <| t k r/t | | t | t f <n | | t k ra| t | | t | f <qan | | } qJ W| S( s
The explicit reduced Burau representation given on Wikipedia since 11.03.2014 is different from the version
implemented in the braid-basis class. The version according to the recent Wikipedia-Page is implemented here.
If you don't see this well formatted type
sage: print local_Braid.__burau_matrix_wikipedia__.__doc__
Moreover it is the version used by Squier and Coxeter and will be used here to implement the unitary Burau
reoresentation
INPUT:
- "var": string (default: 't'); the name of the variable in the entries of the matrix. See also:
print sage.groups.braid.Braid.burau_matrix.__doc__
OUTPUT:
The Burau matrix of the braid. It is a matrix whose entries are Laurent polynomials in the variable "var".
EXAMPLES:
sage: sage.groups.braid.BraidGroup_class = local_BraidGroup_class
sage: B4 = BraidGroup(4)
sage: b1, b2, b3 = B4.gens()
sage: b = b1*b2/b3/b2
sage: type(b)
<class 'lib.local_braid.local_BraidGroup_class_with_category.element_class'>
sage: b.__burau_matrix_wikipedia__()
[ 1 - t -t^-1 + 1 -1]
[ 1 -t^-1 + 1 -1]
[ 1 -t^-1 0]
sage: b.__burau_matrix_wikipedia__(var='x')
[ 1 - x -x^-1 + 1 -1]
[ 1 -x^-1 + 1 -1]
[ 1 -x^-1 0]
compare with the original method
sage: b.burau_matrix()
[ 1 - t 0 t - t^2 t^2]
[ 1 0 0 0]
[ 0 0 1 0]
[ 0 t^-2 -t^-2 + t^-1 -t^-1 + 1]
sage: b.burau_matrix(reduced=True)
[ 0 -t + t^2 -t^2]
[ 0 1 - t + t^2 -t^2]
[ t^-2 -t^-2 + t^-1 - t + t^2 -t^-1 + 1 - t^2]
sage:
REFERENCES:
- wikipedia:'Burau_representation'
AUTHOR
- Sebastian Oehms, Oct. 2016
( t LaurentPolynomialRingt IntegerRingt gent strandst identity_matrixt
_sage_const_1t Tietzet
_sage_const_0t
_sage_const_2( t selft vart RR t nt Mt it A( ( s lib/local_braid.pyt __burau_matrix_wikipedia__Y s( >
!t sc s% | j � � � j � t } t t � d d �} | j d � \ } t t � | � } | j � } | j | t g d | �� t | | � � f d � � } t | | | d � � } t | | | d � � } xE t
| � D]7 }
| |
t | |
|
f <| |
t | |
|
f <q� W| | | } | S( s�
Return the unitary form of the Burau matrix of the braid according to
CRAIG C. SQUIE: THE BURAU REPRESENTATION IS UNITARY, PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY,
Volume 90. Number 2, February 1984
If you don't see this well formatted type
sage: print local_Braid.__burau_matrix_unitary__.__doc__
INPUT:
- "var": string (default: 's'); the name of the variable in the entries of the matrix. The connection with the
variable t of the original burau_matrix is t=s**2. See also:
print sage.groups.braid.Braid.burau_matrix.__doc__
OUTPUT:
The Burau matrix of the braid in the unitary form. It is obtained from the original burau_matrix by a base change
in order to preserve a hermitian form. It is a matrix whose entries are Laurent polynomials in the variable "var".
The original Burau matrix can be obtained by the method local_Braid.__burau_matrix_wikipedia__
EXAMPLES:
sage: sage.groups.braid.BraidGroup_class = local_BraidGroup_class
sage: B4 = BraidGroup(4)
sage: b1, b2, b3 = B4.gens()
sage: b = b1*b2/b3/b2
sage: type(b)
<class 'lib.local_braid.local_BraidGroup_class_with_category.element_class'>
sage: b.__burau_matrix_unitary__()
[ 1 - s^2 -s^-1 + s -s^2]
[ s^-1 -s^-2 + 1 -s]
[ s^-2 -s^-3 0]
sage: b.__burau_matrix_unitary__(var='x')
[ 1 - x^2 -x^-1 + x -x^2]
[ x^-1 -x^-2 + 1 -x]
[ x^-2 -x^-3 0]
sage:
compare with the version given on wikipedia:
sage: b.__burau_matrix_wikipedia__()
[ 1 - t -t^-1 + 1 -1]
[ 1 -t^-1 + 1 -1]
[ 1 -t^-1 0]
compare with the original method:
sage: b.burau_matrix()
[ 1 - t 0 t - t^2 t^2]
[ 1 0 0 0]
[ 0 0 1 0]
[ 0 t^-2 -t^-2 + t^-1 -t^-1 + 1]
sage: b.burau_matrix(reduced=True)
[ 0 -t + t^2 -t^2]
[ 0 1 - t + t^2 -t^2]
[ t^-2 -t^-2 + t^-1 - t + t^2 -t^-1 + 1 - t^2]
sage:
REFERENCES:
- Coxeter, H.S.M: "Factor groups of the braid groups, Proceedings of the Fourth Candian Mathematical Congress
(Vancover 1957), pp. 95-122".
- C. C. Squier:`THE BURAU REPRESENTATION IS UNITARY`, PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 90. Number 2, February 1984
- Tyakay Venkataramana: Image of the Burau Representation at $d$-th Roots of unity. ANNALS OF MATHEMATICS MAY 2014
AUTHOR
- Sebastian Oehms, Oct. 2016
t namesR i t codomainc s � � | | f � S( N( ( R t j( t BurauOrit subsVar( s lib/local_braid.pyt <lambda> s c S s t S( N( R
( R R ( ( s lib/local_braid.pyR s c S s t S( N( R
( R R ( ( s lib/local_braid.pyR s ( R ( R t
dimensionsR
R R t _first_ngensR t homR t matrixt rangeR ( R R
t dt oriDomainR t newDomainR t BurauMatt
transformPt transformPIR t res( ( R R s lib/local_braid.pyt __burau_matrix_unitary__� s M t defaultc C s^ | d k r. t j j j j | d | d | �S| d k rJ | j d | � S| j d | � Sd S( sb
This method is a modification of the original burau_matrix-method. It contains an additional keyword-parameter
"version". If this keyword is not set or is set to the value 'default' it behaves like the original one.
If you don't see this well formatted type:
sage: print local_Braid.burau_matrix.__doc__
To read the original docstring type:
sage: print Braid.burau_matrix.__doc__
INPUT:
- "var": string (default: 't'); the name of the variable in the entries of the matrix. See also:
print sage.groups.braid.Braid.burau_matrix.__doc__
- "reduced": boolean (default: 'False'); whether to return the reduced or unreduced Burau representation.
Note: if version is set to a value different from 'default' this keyword is ignored and treated
as set to 'True' (this means: no unreduced form for other versions)
- "version": string (default = 'default' ). The following values are possible
- "default" the method behaves like the original one. For more information on this see
sage: print Braid.burau_matrix.__doc__
- "unitary" gives the unitary form according to Squier. For more information on this see
sage: print local_Braid.__burau_matrix_unitary__.__doc__
- any value else gives the reduced form given on wikipedia. For more information on this see
sage: print local_Braid.__burau_matrix_wikipedia__.__doc__
OUTPUT:
The Burau matrix of the braid. It is a matrix whose entries are Laurent polynomials in the variable "var".
EXAMPLES:
sage: sage.groups.braid.BraidGroup_class = local_BraidGroup_class
sage: B4 = BraidGroup(4)
sage: b1, b2, b3 = B4.gens()
sage: b = b1*b2/b3/b2
sage: type(b)
<class 'lib.local_braid.local_BraidGroup_class_with_category.element_class'>
sage: b.burau_matrix()
[ 1 - t 0 t - t^2 t^2]
[ 1 0 0 0]
[ 0 0 1 0]
[ 0 t^-2 -t^-2 + t^-1 -t^-1 + 1]
sage: b.burau_matrix(version='unitary')
[ 1 - t^2 -t^-1 + t -t^2]
[ t^-1 -t^-2 + 1 -t]
[ t^-2 -t^-3 0]
sage: b.burau_matrix(version='wiki')
[ 1 - t -t^-1 + 1 -1]
[ 1 -t^-1 + 1 -1]
[ 1 -t^-1 0]
sage: b.burau_matrix(version='wiki', reduced=True)
[ 1 - t -t^-1 + 1 -1]
[ 1 -t^-1 + 1 -1]
[ 1 -t^-1 0]
sage: b.burau_matrix(version='wiki', reduced=False)
[ 1 - t -t^-1 + 1 -1]
[ 1 -t^-1 + 1 -1]
[ 1 -t^-1 0]
sage: b.burau_matrix(reduced=True)
[ 0 -t + t^2 -t^2]
[ 0 1 - t + t^2 -t^2]
[ t^-2 -t^-2 + t^-1 - t + t^2 -t^-1 + 1 - t^2]
sage: b.burau_matrix(var='s', version='unitary')
[ 1 - s^2 -s^-1 + s -s^2]
[ s^-1 -s^-2 + 1 -s]
[ s^-2 -s^-3 0]
sage:
AUTHOR
- Sebastian Oehms, Oct. 2016
R( R
t reducedt unitaryN( t saget groupst braidt Braidt burau_matrixR'