CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Algebraic proof of the associativity of the elliptic curve group law on curves defined by a short Weierstrass equation, as presented in Lecture 2 of 18.783

Views: 1281
License: AGPL3
Image: ubuntu2004
Kernel: SageMath 9.2

For affine points P1=(x1,y1,1)P_1=(x_1,y_1,1) and P2=(x2,y2,1)P_2=(x_2,y_2,1) the sum P1+P2=P3=(x3,y3,1)≠0P_1+P_2=P_3=(x_3,y_3,1)\ne 0 is computed via:

m=y2−y1x2−x1m = \frac{y_2-y_1}{x_2-x_1}   (if x1≠x2x_1\ne x_2)      m=3x12+A2y1m = \frac{3x_1^2+A}{2y_1}    (if x1=x2x_1=x_2)

x3=m2−x1−x2x_3 = m^2 - x_1 - x_2;

y3=m(x3−x1)+y1y_3 = m(x_3-x_1) + y_1.

Let's verify that this operation is associative, i.e. (P+Q)+R=P+(Q+R)(P+Q)+R=P+(Q+R)

Note that the equations are independent of the curve parameters, but we will need to use the fact that the points all satisfy the curve equation

y2=x3+Ax+By^2=x^3 + Ax+B.

RR.<Px,Py,Qx,Qy,Rx,Ry,A,B> = PolynomialRing(ZZ,8) # We represent projective points on E uniquely, as affine points (x,y,1) or the point O=(0,1,0) at infinity P=(Px,Py,1); Q=(Qx,Qy,1); R=(Rx,Ry,1); O=(0,1,0); I=RR.ideal(Py^2-Px^3-A*Px-B, Qy^2-Qx^3-A*Qx-B, Ry^2-Rx^3-A*Rx-B) SS=RR.quotient(I) def add(P,Q): """ general addition algorithm for an elliptic curve in short Weierstrass form""" if P == O: return Q if Q == O: return P assert P[2] == 1 and Q[2] == 1 # we are using affine formulas, so make sure points are in affine form x1=P[0]; y1=P[1]; x2=Q[0]; y2=Q[1]; if x1 != x2: m = (y2-y1)/(x2-x1) # usual case: P and Q are distinct and not opposites else: if y1 == -y2: return O # P = -Q (includes case where P=Q is 2-torsion) m = (3*x1^2+A) / (2*y1) # P = Q so we are doubling x3 = m^2-x1-x2 y3 = m*(x1-x3)-y1 return (x3,y3,1) def negate(P): if P == O: return O return (P[0],-P[1],P[2]) def reduced_fractions_equal(p,q): """ Verifies the inputs p and q are well-defined elements of the fraction field of SS in any char != 2, then tests whether they are equal as elements of the fraction field of SS. We exclude characteristic 2 because we are using formulas for curves in short Weierstrass form, but if we generalized the formulas to curves in general Weierstrass form we could also handle char 2. This is also necessary to handle all curves in char 3 (the formulas here are valid in char 3 but not every elliptic curve can be put in the form y^2 = x^3 + Ax + B in characteristic 3). Note that while we are working with polynomials over ZZ we have a will defined reduction map to polynomials over any ring. We can verify that a polynomial will be nonzero in any field of characteristic p != 2 by verifying that the GCD of the coefficients is 1 or a power of 2. """ # The call to prime_divisors below will fail on 0, which is good assert gcd(SS(p.denominator()).lift().coefficients()).prime_divisors() in [[],[2]] assert gcd(SS(q.denominator()).lift().coefficients()).prime_divisors() in [[],[2]] return SS(p.numerator()*q.denominator()-p.denominator()*q.numerator()) == 0 def on_curve(P): return reduced_fractions_equal(P[1]^2*P[2],P[0]^3+A*P[0]*P[2]^2+B*P[2]^3) def equal(P,Q): return reduced_fractions_equal(P[0]*Q[2],Q[0]*P[2]) and reduced_fractions_equal(P[1]*Q[2],Q[1]*P[2]) def passert(predicate): if eval(predicate): print("Confirmed assertion %s" % predicate) else: print("Failed to confirm assertion %s" % predicate) # raise ValueError("Assertion %s FAILED" % predicate)

As a sanity check, let's first verify that the output of add(PP,QQ) is always on the curve, and check the identity, inverses, and commutativity

passert("on_curve(O) and on_curve(negate(P)) and on_curve(add(P,Q)) and on_curve(add(P,P)) and on_curve(add(P,negate(P)))") passert("add(P,O) == P and add(O,P) == P") passert("add(P,negate(P)) == O") passert("add(P,Q) == add(Q,P)")
Confirmed assertion on_curve(O) and on_curve(negate(P)) and on_curve(add(P,Q)) and on_curve(add(P,P)) and on_curve(add(P,negate(P))) Confirmed assertion add(P,O) == P and add(O,P) == P Confirmed assertion add(P,negate(P)) == O Confirmed assertion add(P,Q) == add(Q,P)

Good, now for associativity in the general case...

passert("add(add(P,Q),R) == add(P,add(Q,R))")
Failed to confirm assertion add(add(P,Q),R) == add(P,add(Q,R))

Oops, we forgot to use the curve equation, we need to use our "equal" function which reduces into the quotient ring.

passert("equal(add(add(P,Q),R),add(P,add(Q,R)))")
Confirmed assertion equal(add(add(P,Q),R),add(P,add(Q,R)))

Now check the cases where 2 points are equal,

passert("equal(add(add(P,P),Q),add(P,add(P,Q))) and equal(add(add(P,Q),P),add(P,add(Q,P))) and equal(add(add(Q,P),P),add(Q,add(P,P)))")
Confirmed assertion equal(add(add(P,P),Q),add(P,add(P,Q))) and equal(add(add(P,Q),P),add(P,add(Q,P))) and equal(add(add(Q,P),P),add(Q,add(P,P)))

and also cases where 2 points are opposites,

S = negate(P); passert("equal(add(add(P,S),Q),add(P,add(S,Q))) and equal(add(add(P,Q),S),add(P,add(Q,S))) and equal(add(add(Q,P),S),add(Q,add(P,S)))")
Confirmed assertion equal(add(add(P,S),Q),add(P,add(S,Q))) and equal(add(add(P,Q),S),add(P,add(Q,S))) and equal(add(add(Q,P),S),add(Q,add(P,S)))

and when all 3 points are equal

passert("equal(add(add(P,P),P),add(P,add(P,P)))")
Confirmed assertion equal(add(add(P,P),P),add(P,add(P,P)))

Just to be paranoid, also check cases where RR is P+QP+Q, P−QP-Q, or −(P+Q)-(P+Q).

passert("equal(add(add(P,Q),add(P,Q)),add(P,add(Q,add(P,Q)))) and equal(add(add(P,Q),add(P,negate(Q))),add(P,add(Q,add(P,negate(Q)))))") passert("equal(add(add(P,Q),negate(add(P,Q))),add(P,add(Q,negate(add(P,Q)))))")
Confirmed assertion equal(add(add(P,Q),add(P,Q)),add(P,add(Q,add(P,Q)))) and equal(add(add(P,Q),add(P,negate(Q))),add(P,add(Q,add(P,negate(Q))))) Confirmed assertion equal(add(add(P,Q),negate(add(P,Q))),add(P,add(Q,negate(add(P,Q)))))

and cases where RR is 2P2P or −2P-2P

passert("equal(add(add(P,Q),add(P,P)),add(P,add(Q,add(P,P)))) and equal(add(add(P,Q),negate(add(P,P))),add(P,add(Q,negate(add(P,P)))))")
Confirmed assertion equal(add(add(P,Q),add(P,P)),add(P,add(Q,add(P,P)))) and equal(add(add(P,Q),negate(add(P,P))),add(P,add(Q,negate(add(P,P)))))

Just in case this all looked too easy, take a look at what is actually being compared...

print(add(add(P,Q),R), "\n\n versus \n\n", add(P,add(Q,R)))
((Px^7 - Px^6*Qx - 3*Px^5*Qx^2 + 3*Px^4*Qx^3 + 3*Px^3*Qx^4 - 3*Px^2*Qx^5 - Px*Qx^6 + Qx^7 + Px^6*Rx - 2*Px^5*Qx*Rx - Px^4*Qx^2*Rx + 4*Px^3*Qx^3*Rx - Px^2*Qx^4*Rx - 2*Px*Qx^5*Rx + Qx^6*Rx - Px^5*Rx^2 + 3*Px^4*Qx*Rx^2 - 2*Px^3*Qx^2*Rx^2 - 2*Px^2*Qx^3*Rx^2 + 3*Px*Qx^4*Rx^2 - Qx^5*Rx^2 - Px^4*Rx^3 + 4*Px^3*Qx*Rx^3 - 6*Px^2*Qx^2*Rx^3 + 4*Px*Qx^3*Rx^3 - Qx^4*Rx^3 - 2*Px^4*Py^2 + 2*Px^3*Py^2*Qx + 3*Px^2*Py^2*Qx^2 - 4*Px*Py^2*Qx^3 + Py^2*Qx^4 + 2*Px^4*Py*Qy - 2*Px^3*Py*Qx*Qy - 2*Px*Py*Qx^3*Qy + 2*Py*Qx^4*Qy + Px^4*Qy^2 - 4*Px^3*Qx*Qy^2 + 3*Px^2*Qx^2*Qy^2 + 2*Px*Qx^3*Qy^2 - 2*Qx^4*Qy^2 - 2*Px^3*Py^2*Rx + 2*Px^2*Py^2*Qx*Rx + 2*Px*Py^2*Qx^2*Rx - 2*Py^2*Qx^3*Rx + 4*Px^3*Py*Qy*Rx - 4*Px^2*Py*Qx*Qy*Rx - 4*Px*Py*Qx^2*Qy*Rx + 4*Py*Qx^3*Qy*Rx - 2*Px^3*Qy^2*Rx + 2*Px^2*Qx*Qy^2*Rx + 2*Px*Qx^2*Qy^2*Rx - 2*Qx^3*Qy^2*Rx + Px^2*Py^2*Rx^2 - 2*Px*Py^2*Qx*Rx^2 + Py^2*Qx^2*Rx^2 - 2*Px^2*Py*Qy*Rx^2 + 4*Px*Py*Qx*Qy*Rx^2 - 2*Py*Qx^2*Qy*Rx^2 + Px^2*Qy^2*Rx^2 - 2*Px*Qx*Qy^2*Rx^2 + Qx^2*Qy^2*Rx^2 - 2*Px^4*Py*Ry + 2*Px^3*Py*Qx*Ry + 6*Px^2*Py*Qx^2*Ry - 10*Px*Py*Qx^3*Ry + 4*Py*Qx^4*Ry + 4*Px^4*Qy*Ry - 10*Px^3*Qx*Qy*Ry + 6*Px^2*Qx^2*Qy*Ry + 2*Px*Qx^3*Qy*Ry - 2*Qx^4*Qy*Ry + Px^4*Ry^2 - 4*Px^3*Qx*Ry^2 + 6*Px^2*Qx^2*Ry^2 - 4*Px*Qx^3*Ry^2 + Qx^4*Ry^2 + Px*Py^4 - Py^4*Qx - 2*Px*Py^3*Qy + 2*Py^3*Qx*Qy + 2*Px*Py*Qy^3 - 2*Py*Qx*Qy^3 - Px*Qy^4 + Qx*Qy^4 + Py^4*Rx - 4*Py^3*Qy*Rx + 6*Py^2*Qy^2*Rx - 4*Py*Qy^3*Rx + Qy^4*Rx + 2*Px*Py^3*Ry - 2*Py^3*Qx*Ry - 6*Px*Py^2*Qy*Ry + 6*Py^2*Qx*Qy*Ry + 6*Px*Py*Qy^2*Ry - 6*Py*Qx*Qy^2*Ry - 2*Px*Qy^3*Ry + 2*Qx*Qy^3*Ry)/(Px^6 - 2*Px^5*Qx - Px^4*Qx^2 + 4*Px^3*Qx^3 - Px^2*Qx^4 - 2*Px*Qx^5 + Qx^6 + 2*Px^5*Rx - 6*Px^4*Qx*Rx + 4*Px^3*Qx^2*Rx + 4*Px^2*Qx^3*Rx - 6*Px*Qx^4*Rx + 2*Qx^5*Rx + Px^4*Rx^2 - 4*Px^3*Qx*Rx^2 + 6*Px^2*Qx^2*Rx^2 - 4*Px*Qx^3*Rx^2 + Qx^4*Rx^2 - 2*Px^3*Py^2 + 2*Px^2*Py^2*Qx + 2*Px*Py^2*Qx^2 - 2*Py^2*Qx^3 + 4*Px^3*Py*Qy - 4*Px^2*Py*Qx*Qy - 4*Px*Py*Qx^2*Qy + 4*Py*Qx^3*Qy - 2*Px^3*Qy^2 + 2*Px^2*Qx*Qy^2 + 2*Px*Qx^2*Qy^2 - 2*Qx^3*Qy^2 - 2*Px^2*Py^2*Rx + 4*Px*Py^2*Qx*Rx - 2*Py^2*Qx^2*Rx + 4*Px^2*Py*Qy*Rx - 8*Px*Py*Qx*Qy*Rx + 4*Py*Qx^2*Qy*Rx - 2*Px^2*Qy^2*Rx + 4*Px*Qx*Qy^2*Rx - 2*Qx^2*Qy^2*Rx + Py^4 - 4*Py^3*Qy + 6*Py^2*Qy^2 - 4*Py*Qy^3 + Qy^4), (Px^9*Py - 6*Px^7*Py*Qx^2 + 2*Px^6*Py*Qx^3 + 12*Px^5*Py*Qx^4 - 6*Px^4*Py*Qx^5 - 10*Px^3*Py*Qx^6 + 6*Px^2*Py*Qx^7 + 3*Px*Py*Qx^8 - 2*Py*Qx^9 - 2*Px^9*Qy + 3*Px^8*Qx*Qy + 6*Px^7*Qx^2*Qy - 10*Px^6*Qx^3*Qy - 6*Px^5*Qx^4*Qy + 12*Px^4*Qx^5*Qy + 2*Px^3*Qx^6*Qy - 6*Px^2*Qx^7*Qy + Qx^9*Qy - 3*Px^7*Py*Rx^2 + 6*Px^6*Py*Qx*Rx^2 + 9*Px^5*Py*Qx^2*Rx^2 - 30*Px^4*Py*Qx^3*Rx^2 + 15*Px^3*Py*Qx^4*Rx^2 + 18*Px^2*Py*Qx^5*Rx^2 - 21*Px*Py*Qx^6*Rx^2 + 6*Py*Qx^7*Rx^2 + 6*Px^7*Qy*Rx^2 - 21*Px^6*Qx*Qy*Rx^2 + 18*Px^5*Qx^2*Qy*Rx^2 + 15*Px^4*Qx^3*Qy*Rx^2 - 30*Px^3*Qx^4*Qy*Rx^2 + 9*Px^2*Qx^5*Qy*Rx^2 + 6*Px*Qx^6*Qy*Rx^2 - 3*Qx^7*Qy*Rx^2 - 2*Px^6*Py*Rx^3 + 6*Px^5*Py*Qx*Rx^3 - 20*Px^3*Py*Qx^3*Rx^3 + 30*Px^2*Py*Qx^4*Rx^3 - 18*Px*Py*Qx^5*Rx^3 + 4*Py*Qx^6*Rx^3 + 4*Px^6*Qy*Rx^3 - 18*Px^5*Qx*Qy*Rx^3 + 30*Px^4*Qx^2*Qy*Rx^3 - 20*Px^3*Qx^3*Qy*Rx^3 + 6*Px*Qx^5*Qy*Rx^3 - 2*Qx^6*Qy*Rx^3 - 2*Px^9*Ry + 6*Px^8*Qx*Ry - 16*Px^6*Qx^3*Ry + 12*Px^5*Qx^4*Ry + 12*Px^4*Qx^5*Ry - 16*Px^3*Qx^6*Ry + 6*Px*Qx^8*Ry - 2*Qx^9*Ry - 3*Px^8*Rx*Ry + 12*Px^7*Qx*Rx*Ry - 12*Px^6*Qx^2*Rx*Ry - 12*Px^5*Qx^3*Rx*Ry + 30*Px^4*Qx^4*Rx*Ry - 12*Px^3*Qx^5*Rx*Ry - 12*Px^2*Qx^6*Rx*Ry + 12*Px*Qx^7*Rx*Ry - 3*Qx^8*Rx*Ry + Px^6*Rx^3*Ry - 6*Px^5*Qx*Rx^3*Ry + 15*Px^4*Qx^2*Rx^3*Ry - 20*Px^3*Qx^3*Rx^3*Ry + 15*Px^2*Qx^4*Rx^3*Ry - 6*Px*Qx^5*Rx^3*Ry + Qx^6*Rx^3*Ry - 3*Px^6*Py^3 + 12*Px^4*Py^3*Qx^2 - 5*Px^3*Py^3*Qx^3 - 12*Px^2*Py^3*Qx^4 + 9*Px*Py^3*Qx^5 - Py^3*Qx^6 + 9*Px^6*Py^2*Qy - 6*Px^5*Py^2*Qx*Qy - 21*Px^4*Py^2*Qx^2*Qy + 15*Px^3*Py^2*Qx^3*Qy + 6*Px^2*Py^2*Qx^4*Qy + 3*Px*Py^2*Qx^5*Qy - 6*Py^2*Qx^6*Qy - 6*Px^6*Py*Qy^2 + 3*Px^5*Py*Qx*Qy^2 + 6*Px^4*Py*Qx^2*Qy^2 + 15*Px^3*Py*Qx^3*Qy^2 - 21*Px^2*Py*Qx^4*Qy^2 - 6*Px*Py*Qx^5*Qy^2 + 9*Py*Qx^6*Qy^2 - Px^6*Qy^3 + 9*Px^5*Qx*Qy^3 - 12*Px^4*Qx^2*Qy^3 - 5*Px^3*Qx^3*Qy^3 + 12*Px^2*Qx^4*Qy^3 - 3*Qx^6*Qy^3 + 6*Px^4*Py^3*Rx^2 - 9*Px^3*Py^3*Qx*Rx^2 - 9*Px^2*Py^3*Qx^2*Rx^2 + 21*Px*Py^3*Qx^3*Rx^2 - 9*Py^3*Qx^4*Rx^2 - 21*Px^4*Py^2*Qy*Rx^2 + 39*Px^3*Py^2*Qx*Qy*Rx^2 + 9*Px^2*Py^2*Qx^2*Qy*Rx^2 - 51*Px*Py^2*Qx^3*Qy*Rx^2 + 24*Py^2*Qx^4*Qy*Rx^2 + 24*Px^4*Py*Qy^2*Rx^2 - 51*Px^3*Py*Qx*Qy^2*Rx^2 + 9*Px^2*Py*Qx^2*Qy^2*Rx^2 + 39*Px*Py*Qx^3*Qy^2*Rx^2 - 21*Py*Qx^4*Qy^2*Rx^2 - 9*Px^4*Qy^3*Rx^2 + 21*Px^3*Qx*Qy^3*Rx^2 - 9*Px^2*Qx^2*Qy^3*Rx^2 - 9*Px*Qx^3*Qy^3*Rx^2 + 6*Qx^4*Qy^3*Rx^2 + 2*Px^3*Py^3*Rx^3 - 6*Px^2*Py^3*Qx*Rx^3 + 6*Px*Py^3*Qx^2*Rx^3 - 2*Py^3*Qx^3*Rx^3 - 6*Px^3*Py^2*Qy*Rx^3 + 18*Px^2*Py^2*Qx*Qy*Rx^3 - 18*Px*Py^2*Qx^2*Qy*Rx^3 + 6*Py^2*Qx^3*Qy*Rx^3 + 6*Px^3*Py*Qy^2*Rx^3 - 18*Px^2*Py*Qx*Qy^2*Rx^3 + 18*Px*Py*Qx^2*Qy^2*Rx^3 - 6*Py*Qx^3*Qy^2*Rx^3 - 2*Px^3*Qy^3*Rx^3 + 6*Px^2*Qx*Qy^3*Rx^3 - 6*Px*Qx^2*Qy^3*Rx^3 + 2*Qx^3*Qy^3*Rx^3 + 3*Px^6*Py^2*Ry - 12*Px^5*Py^2*Qx*Ry + 12*Px^4*Py^2*Qx^2*Ry + 12*Px^3*Py^2*Qx^3*Ry - 33*Px^2*Py^2*Qx^4*Ry + 24*Px*Py^2*Qx^5*Ry - 6*Py^2*Qx^6*Ry + 6*Px^5*Py*Qx*Qy*Ry - 24*Px^4*Py*Qx^2*Qy*Ry + 36*Px^3*Py*Qx^3*Qy*Ry - 24*Px^2*Py*Qx^4*Qy*Ry + 6*Px*Py*Qx^5*Qy*Ry - 6*Px^6*Qy^2*Ry + 24*Px^5*Qx*Qy^2*Ry - 33*Px^4*Qx^2*Qy^2*Ry + 12*Px^3*Qx^3*Qy^2*Ry + 12*Px^2*Qx^4*Qy^2*Ry - 12*Px*Qx^5*Qy^2*Ry + 3*Qx^6*Qy^2*Ry + 6*Px^5*Py^2*Rx*Ry - 18*Px^4*Py^2*Qx*Rx*Ry + 12*Px^3*Py^2*Qx^2*Rx*Ry + 12*Px^2*Py^2*Qx^3*Rx*Ry - 18*Px*Py^2*Qx^4*Rx*Ry + 6*Py^2*Qx^5*Rx*Ry - 12*Px^5*Py*Qy*Rx*Ry + 36*Px^4*Py*Qx*Qy*Rx*Ry - 24*Px^3*Py*Qx^2*Qy*Rx*Ry - 24*Px^2*Py*Qx^3*Qy*Rx*Ry + 36*Px*Py*Qx^4*Qy*Rx*Ry - 12*Py*Qx^5*Qy*Rx*Ry + 6*Px^5*Qy^2*Rx*Ry - 18*Px^4*Qx*Qy^2*Rx*Ry + 12*Px^3*Qx^2*Qy^2*Rx*Ry + 12*Px^2*Qx^3*Qy^2*Rx*Ry - 18*Px*Qx^4*Qy^2*Rx*Ry + 6*Qx^5*Qy^2*Rx*Ry + 3*Px^6*Py*Ry^2 - 9*Px^5*Py*Qx*Ry^2 + 30*Px^3*Py*Qx^3*Ry^2 - 45*Px^2*Py*Qx^4*Ry^2 + 27*Px*Py*Qx^5*Ry^2 - 6*Py*Qx^6*Ry^2 - 6*Px^6*Qy*Ry^2 + 27*Px^5*Qx*Qy*Ry^2 - 45*Px^4*Qx^2*Qy*Ry^2 + 30*Px^3*Qx^3*Qy*Ry^2 - 9*Px*Qx^5*Qy*Ry^2 + 3*Qx^6*Qy*Ry^2 - Px^6*Ry^3 + 6*Px^5*Qx*Ry^3 - 15*Px^4*Qx^2*Ry^3 + 20*Px^3*Qx^3*Ry^3 - 15*Px^2*Qx^4*Ry^3 + 6*Px*Qx^5*Ry^3 - Qx^6*Ry^3 + 3*Px^3*Py^5 - 6*Px*Py^5*Qx^2 + 3*Py^5*Qx^3 - 12*Px^3*Py^4*Qy + 3*Px^2*Py^4*Qx*Qy + 15*Px*Py^4*Qx^2*Qy - 6*Py^4*Qx^3*Qy + 15*Px^3*Py^3*Qy^2 - 3*Px^2*Py^3*Qx*Qy^2 - 9*Px*Py^3*Qx^2*Qy^2 - 3*Py^3*Qx^3*Qy^2 - 3*Px^3*Py^2*Qy^3 - 9*Px^2*Py^2*Qx*Qy^3 - 3*Px*Py^2*Qx^2*Qy^3 + 15*Py^2*Qx^3*Qy^3 - 6*Px^3*Py*Qy^4 + 15*Px^2*Py*Qx*Qy^4 + 3*Px*Py*Qx^2*Qy^4 - 12*Py*Qx^3*Qy^4 + 3*Px^3*Qy^5 - 6*Px^2*Qx*Qy^5 + 3*Qx^3*Qy^5 - 3*Px*Py^5*Rx^2 + 3*Py^5*Qx*Rx^2 + 15*Px*Py^4*Qy*Rx^2 - 15*Py^4*Qx*Qy*Rx^2 - 30*Px*Py^3*Qy^2*Rx^2 + 30*Py^3*Qx*Qy^2*Rx^2 + 30*Px*Py^2*Qy^3*Rx^2 - 30*Py^2*Qx*Qy^3*Rx^2 - 15*Px*Py*Qy^4*Rx^2 + 15*Py*Qx*Qy^4*Rx^2 + 3*Px*Qy^5*Rx^2 - 3*Qx*Qy^5*Rx^2 + 6*Px^2*Py^4*Qx*Ry - 12*Px*Py^4*Qx^2*Ry + 6*Py^4*Qx^3*Ry - 6*Px^3*Py^3*Qy*Ry - 6*Px^2*Py^3*Qx*Qy*Ry + 30*Px*Py^3*Qx^2*Qy*Ry - 18*Py^3*Qx^3*Qy*Ry + 18*Px^3*Py^2*Qy^2*Ry - 18*Px^2*Py^2*Qx*Qy^2*Ry - 18*Px*Py^2*Qx^2*Qy^2*Ry + 18*Py^2*Qx^3*Qy^2*Ry - 18*Px^3*Py*Qy^3*Ry + 30*Px^2*Py*Qx*Qy^3*Ry - 6*Px*Py*Qx^2*Qy^3*Ry - 6*Py*Qx^3*Qy^3*Ry + 6*Px^3*Qy^4*Ry - 12*Px^2*Qx*Qy^4*Ry + 6*Px*Qx^2*Qy^4*Ry - 3*Px^2*Py^4*Rx*Ry + 6*Px*Py^4*Qx*Rx*Ry - 3*Py^4*Qx^2*Rx*Ry + 12*Px^2*Py^3*Qy*Rx*Ry - 24*Px*Py^3*Qx*Qy*Rx*Ry + 12*Py^3*Qx^2*Qy*Rx*Ry - 18*Px^2*Py^2*Qy^2*Rx*Ry + 36*Px*Py^2*Qx*Qy^2*Rx*Ry - 18*Py^2*Qx^2*Qy^2*Rx*Ry + 12*Px^2*Py*Qy^3*Rx*Ry - 24*Px*Py*Qx*Qy^3*Rx*Ry + 12*Py*Qx^2*Qy^3*Rx*Ry - 3*Px^2*Qy^4*Rx*Ry + 6*Px*Qx*Qy^4*Rx*Ry - 3*Qx^2*Qy^4*Rx*Ry - 3*Px^3*Py^3*Ry^2 + 9*Px^2*Py^3*Qx*Ry^2 - 9*Px*Py^3*Qx^2*Ry^2 + 3*Py^3*Qx^3*Ry^2 + 9*Px^3*Py^2*Qy*Ry^2 - 27*Px^2*Py^2*Qx*Qy*Ry^2 + 27*Px*Py^2*Qx^2*Qy*Ry^2 - 9*Py^2*Qx^3*Qy*Ry^2 - 9*Px^3*Py*Qy^2*Ry^2 + 27*Px^2*Py*Qx*Qy^2*Ry^2 - 27*Px*Py*Qx^2*Qy^2*Ry^2 + 9*Py*Qx^3*Qy^2*Ry^2 + 3*Px^3*Qy^3*Ry^2 - 9*Px^2*Qx*Qy^3*Ry^2 + 9*Px*Qx^2*Qy^3*Ry^2 - 3*Qx^3*Qy^3*Ry^2 - Py^7 + 5*Py^6*Qy - 9*Py^5*Qy^2 + 5*Py^4*Qy^3 + 5*Py^3*Qy^4 - 9*Py^2*Qy^5 + 5*Py*Qy^6 - Qy^7 - Py^6*Ry + 6*Py^5*Qy*Ry - 15*Py^4*Qy^2*Ry + 20*Py^3*Qy^3*Ry - 15*Py^2*Qy^4*Ry + 6*Py*Qy^5*Ry - Qy^6*Ry)/(Px^9 - 3*Px^8*Qx + 8*Px^6*Qx^3 - 6*Px^5*Qx^4 - 6*Px^4*Qx^5 + 8*Px^3*Qx^6 - 3*Px*Qx^8 + Qx^9 + 3*Px^8*Rx - 12*Px^7*Qx*Rx + 12*Px^6*Qx^2*Rx + 12*Px^5*Qx^3*Rx - 30*Px^4*Qx^4*Rx + 12*Px^3*Qx^5*Rx + 12*Px^2*Qx^6*Rx - 12*Px*Qx^7*Rx + 3*Qx^8*Rx + 3*Px^7*Rx^2 - 15*Px^6*Qx*Rx^2 + 27*Px^5*Qx^2*Rx^2 - 15*Px^4*Qx^3*Rx^2 - 15*Px^3*Qx^4*Rx^2 + 27*Px^2*Qx^5*Rx^2 - 15*Px*Qx^6*Rx^2 + 3*Qx^7*Rx^2 + Px^6*Rx^3 - 6*Px^5*Qx*Rx^3 + 15*Px^4*Qx^2*Rx^3 - 20*Px^3*Qx^3*Rx^3 + 15*Px^2*Qx^4*Rx^3 - 6*Px*Qx^5*Rx^3 + Qx^6*Rx^3 - 3*Px^6*Py^2 + 6*Px^5*Py^2*Qx + 3*Px^4*Py^2*Qx^2 - 12*Px^3*Py^2*Qx^3 + 3*Px^2*Py^2*Qx^4 + 6*Px*Py^2*Qx^5 - 3*Py^2*Qx^6 + 6*Px^6*Py*Qy - 12*Px^5*Py*Qx*Qy - 6*Px^4*Py*Qx^2*Qy + 24*Px^3*Py*Qx^3*Qy - 6*Px^2*Py*Qx^4*Qy - 12*Px*Py*Qx^5*Qy + 6*Py*Qx^6*Qy - 3*Px^6*Qy^2 + 6*Px^5*Qx*Qy^2 + 3*Px^4*Qx^2*Qy^2 - 12*Px^3*Qx^3*Qy^2 + 3*Px^2*Qx^4*Qy^2 + 6*Px*Qx^5*Qy^2 - 3*Qx^6*Qy^2 - 6*Px^5*Py^2*Rx + 18*Px^4*Py^2*Qx*Rx - 12*Px^3*Py^2*Qx^2*Rx - 12*Px^2*Py^2*Qx^3*Rx + 18*Px*Py^2*Qx^4*Rx - 6*Py^2*Qx^5*Rx + 12*Px^5*Py*Qy*Rx - 36*Px^4*Py*Qx*Qy*Rx + 24*Px^3*Py*Qx^2*Qy*Rx + 24*Px^2*Py*Qx^3*Qy*Rx - 36*Px*Py*Qx^4*Qy*Rx + 12*Py*Qx^5*Qy*Rx - 6*Px^5*Qy^2*Rx + 18*Px^4*Qx*Qy^2*Rx - 12*Px^3*Qx^2*Qy^2*Rx - 12*Px^2*Qx^3*Qy^2*Rx + 18*Px*Qx^4*Qy^2*Rx - 6*Qx^5*Qy^2*Rx - 3*Px^4*Py^2*Rx^2 + 12*Px^3*Py^2*Qx*Rx^2 - 18*Px^2*Py^2*Qx^2*Rx^2 + 12*Px*Py^2*Qx^3*Rx^2 - 3*Py^2*Qx^4*Rx^2 + 6*Px^4*Py*Qy*Rx^2 - 24*Px^3*Py*Qx*Qy*Rx^2 + 36*Px^2*Py*Qx^2*Qy*Rx^2 - 24*Px*Py*Qx^3*Qy*Rx^2 + 6*Py*Qx^4*Qy*Rx^2 - 3*Px^4*Qy^2*Rx^2 + 12*Px^3*Qx*Qy^2*Rx^2 - 18*Px^2*Qx^2*Qy^2*Rx^2 + 12*Px*Qx^3*Qy^2*Rx^2 - 3*Qx^4*Qy^2*Rx^2 + 3*Px^3*Py^4 - 3*Px^2*Py^4*Qx - 3*Px*Py^4*Qx^2 + 3*Py^4*Qx^3 - 12*Px^3*Py^3*Qy + 12*Px^2*Py^3*Qx*Qy + 12*Px*Py^3*Qx^2*Qy - 12*Py^3*Qx^3*Qy + 18*Px^3*Py^2*Qy^2 - 18*Px^2*Py^2*Qx*Qy^2 - 18*Px*Py^2*Qx^2*Qy^2 + 18*Py^2*Qx^3*Qy^2 - 12*Px^3*Py*Qy^3 + 12*Px^2*Py*Qx*Qy^3 + 12*Px*Py*Qx^2*Qy^3 - 12*Py*Qx^3*Qy^3 + 3*Px^3*Qy^4 - 3*Px^2*Qx*Qy^4 - 3*Px*Qx^2*Qy^4 + 3*Qx^3*Qy^4 + 3*Px^2*Py^4*Rx - 6*Px*Py^4*Qx*Rx + 3*Py^4*Qx^2*Rx - 12*Px^2*Py^3*Qy*Rx + 24*Px*Py^3*Qx*Qy*Rx - 12*Py^3*Qx^2*Qy*Rx + 18*Px^2*Py^2*Qy^2*Rx - 36*Px*Py^2*Qx*Qy^2*Rx + 18*Py^2*Qx^2*Qy^2*Rx - 12*Px^2*Py*Qy^3*Rx + 24*Px*Py*Qx*Qy^3*Rx - 12*Py*Qx^2*Qy^3*Rx + 3*Px^2*Qy^4*Rx - 6*Px*Qx*Qy^4*Rx + 3*Qx^2*Qy^4*Rx - Py^6 + 6*Py^5*Qy - 15*Py^4*Qy^2 + 20*Py^3*Qy^3 - 15*Py^2*Qy^4 + 6*Py*Qy^5 - Qy^6), 1) versus ((-Px^3*Qx^4 - Px^2*Qx^5 + Px*Qx^6 + Qx^7 + 4*Px^3*Qx^3*Rx + 3*Px^2*Qx^4*Rx - 2*Px*Qx^5*Rx - Qx^6*Rx - 6*Px^3*Qx^2*Rx^2 - 2*Px^2*Qx^3*Rx^2 - Px*Qx^4*Rx^2 - 3*Qx^5*Rx^2 + 4*Px^3*Qx*Rx^3 - 2*Px^2*Qx^2*Rx^3 + 4*Px*Qx^3*Rx^3 + 3*Qx^4*Rx^3 - Px^3*Rx^4 + 3*Px^2*Qx*Rx^4 - Px*Qx^2*Rx^4 + 3*Qx^3*Rx^4 - Px^2*Rx^5 - 2*Px*Qx*Rx^5 - 3*Qx^2*Rx^5 + Px*Rx^6 - Qx*Rx^6 + Rx^7 + Py^2*Qx^4 - 2*Py*Qx^4*Qy + Px^2*Qx^2*Qy^2 - 2*Px*Qx^3*Qy^2 - 2*Qx^4*Qy^2 - 4*Py^2*Qx^3*Rx + 2*Py*Qx^3*Qy*Rx - 2*Px^2*Qx*Qy^2*Rx + 2*Px*Qx^2*Qy^2*Rx + 2*Qx^3*Qy^2*Rx + 6*Py^2*Qx^2*Rx^2 + 6*Py*Qx^2*Qy*Rx^2 + Px^2*Qy^2*Rx^2 + 2*Px*Qx*Qy^2*Rx^2 + 3*Qx^2*Qy^2*Rx^2 - 4*Py^2*Qx*Rx^3 - 10*Py*Qx*Qy*Rx^3 - 2*Px*Qy^2*Rx^3 - 4*Qx*Qy^2*Rx^3 + Py^2*Rx^4 + 4*Py*Qy*Rx^4 + Qy^2*Rx^4 + 4*Py*Qx^4*Ry - 2*Px^2*Qx^2*Qy*Ry + 4*Px*Qx^3*Qy*Ry + 2*Qx^4*Qy*Ry - 10*Py*Qx^3*Rx*Ry + 4*Px^2*Qx*Qy*Rx*Ry - 4*Px*Qx^2*Qy*Rx*Ry - 2*Qx^3*Qy*Rx*Ry + 6*Py*Qx^2*Rx^2*Ry - 2*Px^2*Qy*Rx^2*Ry - 4*Px*Qx*Qy*Rx^2*Ry + 2*Py*Qx*Rx^3*Ry + 4*Px*Qy*Rx^3*Ry - 2*Qx*Qy*Rx^3*Ry - 2*Py*Rx^4*Ry + 2*Qy*Rx^4*Ry + Px^2*Qx^2*Ry^2 - 2*Px*Qx^3*Ry^2 + Qx^4*Ry^2 - 2*Px^2*Qx*Rx*Ry^2 + 2*Px*Qx^2*Rx*Ry^2 - 4*Qx^3*Rx*Ry^2 + Px^2*Rx^2*Ry^2 + 2*Px*Qx*Rx^2*Ry^2 + 3*Qx^2*Rx^2*Ry^2 - 2*Px*Rx^3*Ry^2 + 2*Qx*Rx^3*Ry^2 - 2*Rx^4*Ry^2 + 2*Py*Qx*Qy^3 + Px*Qy^4 + Qx*Qy^4 - 2*Py*Qy^3*Rx - Qy^4*Rx - 6*Py*Qx*Qy^2*Ry - 4*Px*Qy^3*Ry - 2*Qx*Qy^3*Ry + 6*Py*Qy^2*Rx*Ry + 2*Qy^3*Rx*Ry + 6*Py*Qx*Qy*Ry^2 + 6*Px*Qy^2*Ry^2 - 6*Py*Qy*Rx*Ry^2 - 2*Py*Qx*Ry^3 - 4*Px*Qy*Ry^3 + 2*Qx*Qy*Ry^3 + 2*Py*Rx*Ry^3 - 2*Qy*Rx*Ry^3 + Px*Ry^4 - Qx*Ry^4 + Rx*Ry^4)/(Px^2*Qx^4 + 2*Px*Qx^5 + Qx^6 - 4*Px^2*Qx^3*Rx - 6*Px*Qx^4*Rx - 2*Qx^5*Rx + 6*Px^2*Qx^2*Rx^2 + 4*Px*Qx^3*Rx^2 - Qx^4*Rx^2 - 4*Px^2*Qx*Rx^3 + 4*Px*Qx^2*Rx^3 + 4*Qx^3*Rx^3 + Px^2*Rx^4 - 6*Px*Qx*Rx^4 - Qx^2*Rx^4 + 2*Px*Rx^5 - 2*Qx*Rx^5 + Rx^6 - 2*Px*Qx^2*Qy^2 - 2*Qx^3*Qy^2 + 4*Px*Qx*Qy^2*Rx + 2*Qx^2*Qy^2*Rx - 2*Px*Qy^2*Rx^2 + 2*Qx*Qy^2*Rx^2 - 2*Qy^2*Rx^3 + 4*Px*Qx^2*Qy*Ry + 4*Qx^3*Qy*Ry - 8*Px*Qx*Qy*Rx*Ry - 4*Qx^2*Qy*Rx*Ry + 4*Px*Qy*Rx^2*Ry - 4*Qx*Qy*Rx^2*Ry + 4*Qy*Rx^3*Ry - 2*Px*Qx^2*Ry^2 - 2*Qx^3*Ry^2 + 4*Px*Qx*Rx*Ry^2 + 2*Qx^2*Rx*Ry^2 - 2*Px*Rx^2*Ry^2 + 2*Qx*Rx^2*Ry^2 - 2*Rx^3*Ry^2 + Qy^4 - 4*Qy^3*Ry + 6*Qy^2*Ry^2 - 4*Qy*Ry^3 + Ry^4), (-Px^3*Py*Qx^6 + 3*Px*Py*Qx^8 + 2*Py*Qx^9 + 2*Px^3*Qx^6*Qy + 3*Px^2*Qx^7*Qy - Qx^9*Qy + 6*Px^3*Py*Qx^5*Rx - 12*Px*Py*Qx^7*Rx - 6*Py*Qx^8*Rx - 6*Px^3*Qx^5*Qy*Rx - 6*Px^2*Qx^6*Qy*Rx - 15*Px^3*Py*Qx^4*Rx^2 + 12*Px*Py*Qx^6*Rx^2 - 9*Px^2*Qx^5*Qy*Rx^2 + 6*Qx^7*Qy*Rx^2 + 20*Px^3*Py*Qx^3*Rx^3 + 12*Px*Py*Qx^5*Rx^3 + 16*Py*Qx^6*Rx^3 + 20*Px^3*Qx^3*Qy*Rx^3 + 30*Px^2*Qx^4*Qy*Rx^3 - 2*Qx^6*Qy*Rx^3 - 15*Px^3*Py*Qx^2*Rx^4 - 30*Px*Py*Qx^4*Rx^4 - 12*Py*Qx^5*Rx^4 - 30*Px^3*Qx^2*Qy*Rx^4 - 15*Px^2*Qx^3*Qy*Rx^4 - 12*Qx^5*Qy*Rx^4 + 6*Px^3*Py*Qx*Rx^5 + 12*Px*Py*Qx^3*Rx^5 - 12*Py*Qx^4*Rx^5 + 18*Px^3*Qx*Qy*Rx^5 - 18*Px^2*Qx^2*Qy*Rx^5 + 6*Qx^4*Qy*Rx^5 - Px^3*Py*Rx^6 + 12*Px*Py*Qx^2*Rx^6 + 16*Py*Qx^3*Rx^6 - 4*Px^3*Qy*Rx^6 + 21*Px^2*Qx*Qy*Rx^6 + 10*Qx^3*Qy*Rx^6 - 12*Px*Py*Qx*Rx^7 - 6*Px^2*Qy*Rx^7 - 6*Qx^2*Qy*Rx^7 + 3*Px*Py*Rx^8 - 6*Py*Qx*Rx^8 - 3*Qx*Qy*Rx^8 + 2*Py*Rx^9 + 2*Qy*Rx^9 - 4*Px^3*Qx^6*Ry - 6*Px^2*Qx^7*Ry + 2*Qx^9*Ry + 18*Px^3*Qx^5*Rx*Ry + 21*Px^2*Qx^6*Rx*Ry - 3*Qx^8*Rx*Ry - 30*Px^3*Qx^4*Rx^2*Ry - 18*Px^2*Qx^5*Rx^2*Ry - 6*Qx^7*Rx^2*Ry + 20*Px^3*Qx^3*Rx^3*Ry - 15*Px^2*Qx^4*Rx^3*Ry + 10*Qx^6*Rx^3*Ry + 30*Px^2*Qx^3*Rx^4*Ry + 6*Qx^5*Rx^4*Ry - 6*Px^3*Qx*Rx^5*Ry - 9*Px^2*Qx^2*Rx^5*Ry - 12*Qx^4*Rx^5*Ry + 2*Px^3*Rx^6*Ry - 6*Px^2*Qx*Rx^6*Ry - 2*Qx^3*Rx^6*Ry + 3*Px^2*Rx^7*Ry + 6*Qx^2*Rx^7*Ry - Rx^9*Ry + Py^3*Qx^6 - 3*Py^2*Qx^6*Qy - 6*Px*Py*Qx^5*Qy^2 - 3*Py*Qx^6*Qy^2 - 2*Px^3*Qx^3*Qy^3 - 6*Px^2*Qx^4*Qy^3 + 3*Qx^6*Qy^3 - 6*Py^3*Qx^5*Rx + 9*Py^2*Qx^5*Qy*Rx + 18*Px*Py*Qx^4*Qy^2*Rx + 12*Py*Qx^5*Qy^2*Rx + 6*Px^3*Qx^2*Qy^3*Rx + 9*Px^2*Qx^3*Qy^3*Rx + 15*Py^3*Qx^4*Rx^2 - 12*Px*Py*Qx^3*Qy^2*Rx^2 - 12*Py*Qx^4*Qy^2*Rx^2 - 6*Px^3*Qx*Qy^3*Rx^2 + 9*Px^2*Qx^2*Qy^3*Rx^2 - 12*Qx^4*Qy^3*Rx^2 - 20*Py^3*Qx^3*Rx^3 - 30*Py^2*Qx^3*Qy*Rx^3 - 12*Px*Py*Qx^2*Qy^2*Rx^3 - 12*Py*Qx^3*Qy^2*Rx^3 + 2*Px^3*Qy^3*Rx^3 - 21*Px^2*Qx*Qy^3*Rx^3 + 5*Qx^3*Qy^3*Rx^3 + 15*Py^3*Qx^2*Rx^4 + 45*Py^2*Qx^2*Qy*Rx^4 + 18*Px*Py*Qx*Qy^2*Rx^4 + 33*Py*Qx^2*Qy^2*Rx^4 + 9*Px^2*Qy^3*Rx^4 + 12*Qx^2*Qy^3*Rx^4 - 6*Py^3*Qx*Rx^5 - 27*Py^2*Qx*Qy*Rx^5 - 6*Px*Py*Qy^2*Rx^5 - 24*Py*Qx*Qy^2*Rx^5 - 9*Qx*Qy^3*Rx^5 + Py^3*Rx^6 + 6*Py^2*Qy*Rx^6 + 6*Py*Qy^2*Rx^6 + Qy^3*Rx^6 + 6*Py^2*Qx^6*Ry + 12*Px*Py*Qx^5*Qy*Ry + 6*Px^3*Qx^3*Qy^2*Ry + 21*Px^2*Qx^4*Qy^2*Ry - 9*Qx^6*Qy^2*Ry - 27*Py^2*Qx^5*Rx*Ry - 36*Px*Py*Qx^4*Qy*Rx*Ry - 6*Py*Qx^5*Qy*Rx*Ry - 18*Px^3*Qx^2*Qy^2*Rx*Ry - 39*Px^2*Qx^3*Qy^2*Rx*Ry + 6*Qx^5*Qy^2*Rx*Ry + 45*Py^2*Qx^4*Rx^2*Ry + 24*Px*Py*Qx^3*Qy*Rx^2*Ry + 24*Py*Qx^4*Qy*Rx^2*Ry + 18*Px^3*Qx*Qy^2*Rx^2*Ry - 9*Px^2*Qx^2*Qy^2*Rx^2*Ry + 21*Qx^4*Qy^2*Rx^2*Ry - 30*Py^2*Qx^3*Rx^3*Ry + 24*Px*Py*Qx^2*Qy*Rx^3*Ry - 36*Py*Qx^3*Qy*Rx^3*Ry - 6*Px^3*Qy^2*Rx^3*Ry + 51*Px^2*Qx*Qy^2*Rx^3*Ry - 15*Qx^3*Qy^2*Rx^3*Ry - 36*Px*Py*Qx*Qy*Rx^4*Ry + 24*Py*Qx^2*Qy*Rx^4*Ry - 24*Px^2*Qy^2*Rx^4*Ry - 6*Qx^2*Qy^2*Rx^4*Ry + 9*Py^2*Qx*Rx^5*Ry + 12*Px*Py*Qy*Rx^5*Ry - 6*Py*Qx*Qy*Rx^5*Ry - 3*Qx*Qy^2*Rx^5*Ry - 3*Py^2*Rx^6*Ry + 6*Qy^2*Rx^6*Ry - 6*Px*Py*Qx^5*Ry^2 + 6*Py*Qx^6*Ry^2 - 6*Px^3*Qx^3*Qy*Ry^2 - 24*Px^2*Qx^4*Qy*Ry^2 + 6*Qx^6*Qy*Ry^2 + 18*Px*Py*Qx^4*Rx*Ry^2 - 24*Py*Qx^5*Rx*Ry^2 + 18*Px^3*Qx^2*Qy*Rx*Ry^2 + 51*Px^2*Qx^3*Qy*Rx*Ry^2 - 3*Qx^5*Qy*Rx*Ry^2 - 12*Px*Py*Qx^3*Rx^2*Ry^2 + 33*Py*Qx^4*Rx^2*Ry^2 - 18*Px^3*Qx*Qy*Rx^2*Ry^2 - 9*Px^2*Qx^2*Qy*Rx^2*Ry^2 - 6*Qx^4*Qy*Rx^2*Ry^2 - 12*Px*Py*Qx^2*Rx^3*Ry^2 - 12*Py*Qx^3*Rx^3*Ry^2 + 6*Px^3*Qy*Rx^3*Ry^2 - 39*Px^2*Qx*Qy*Rx^3*Ry^2 - 15*Qx^3*Qy*Rx^3*Ry^2 + 18*Px*Py*Qx*Rx^4*Ry^2 - 12*Py*Qx^2*Rx^4*Ry^2 + 21*Px^2*Qy*Rx^4*Ry^2 + 21*Qx^2*Qy*Rx^4*Ry^2 - 6*Px*Py*Rx^5*Ry^2 + 12*Py*Qx*Rx^5*Ry^2 + 6*Qx*Qy*Rx^5*Ry^2 - 3*Py*Rx^6*Ry^2 - 9*Qy*Rx^6*Ry^2 + 2*Px^3*Qx^3*Ry^3 + 9*Px^2*Qx^4*Ry^3 + Qx^6*Ry^3 - 6*Px^3*Qx^2*Rx*Ry^3 - 21*Px^2*Qx^3*Rx*Ry^3 - 9*Qx^5*Rx*Ry^3 + 6*Px^3*Qx*Rx^2*Ry^3 + 9*Px^2*Qx^2*Rx^2*Ry^3 + 12*Qx^4*Rx^2*Ry^3 - 2*Px^3*Rx^3*Ry^3 + 9*Px^2*Qx*Rx^3*Ry^3 + 5*Qx^3*Rx^3*Ry^3 - 6*Px^2*Rx^4*Ry^3 - 12*Qx^2*Rx^4*Ry^3 + 3*Rx^6*Ry^3 + 3*Py^2*Qx^3*Qy^3 + 3*Px*Py*Qx^2*Qy^4 + 3*Px^2*Qx*Qy^5 - 3*Qx^3*Qy^5 - 9*Py^2*Qx^2*Qy^3*Rx - 6*Px*Py*Qx*Qy^4*Rx - 6*Py*Qx^2*Qy^4*Rx - 3*Px^2*Qy^5*Rx + 9*Py^2*Qx*Qy^3*Rx^2 + 3*Px*Py*Qy^4*Rx^2 + 12*Py*Qx*Qy^4*Rx^2 + 6*Qx*Qy^5*Rx^2 - 3*Py^2*Qy^3*Rx^3 - 6*Py*Qy^4*Rx^3 - 3*Qy^5*Rx^3 - 9*Py^2*Qx^3*Qy^2*Ry - 12*Px*Py*Qx^2*Qy^3*Ry + 6*Py*Qx^3*Qy^3*Ry - 15*Px^2*Qx*Qy^4*Ry + 12*Qx^3*Qy^4*Ry + 27*Py^2*Qx^2*Qy^2*Rx*Ry + 24*Px*Py*Qx*Qy^3*Rx*Ry + 6*Py*Qx^2*Qy^3*Rx*Ry + 15*Px^2*Qy^4*Rx*Ry - 3*Qx^2*Qy^4*Rx*Ry - 27*Py^2*Qx*Qy^2*Rx^2*Ry - 12*Px*Py*Qy^3*Rx^2*Ry - 30*Py*Qx*Qy^3*Rx^2*Ry - 15*Qx*Qy^4*Rx^2*Ry + 9*Py^2*Qy^2*Rx^3*Ry + 18*Py*Qy^3*Rx^3*Ry + 6*Qy^4*Rx^3*Ry + 9*Py^2*Qx^3*Qy*Ry^2 + 18*Px*Py*Qx^2*Qy^2*Ry^2 - 18*Py*Qx^3*Qy^2*Ry^2 + 30*Px^2*Qx*Qy^3*Ry^2 - 15*Qx^3*Qy^3*Ry^2 - 27*Py^2*Qx^2*Qy*Rx*Ry^2 - 36*Px*Py*Qx*Qy^2*Rx*Ry^2 + 18*Py*Qx^2*Qy^2*Rx*Ry^2 - 30*Px^2*Qy^3*Rx*Ry^2 + 3*Qx^2*Qy^3*Rx*Ry^2 + 27*Py^2*Qx*Qy*Rx^2*Ry^2 + 18*Px*Py*Qy^2*Rx^2*Ry^2 + 18*Py*Qx*Qy^2*Rx^2*Ry^2 + 9*Qx*Qy^3*Rx^2*Ry^2 - 9*Py^2*Qy*Rx^3*Ry^2 - 18*Py*Qy^2*Rx^3*Ry^2 + 3*Qy^3*Rx^3*Ry^2 - 3*Py^2*Qx^3*Ry^3 - 12*Px*Py*Qx^2*Qy*Ry^3 + 18*Py*Qx^3*Qy*Ry^3 - 30*Px^2*Qx*Qy^2*Ry^3 + 3*Qx^3*Qy^2*Ry^3 + 9*Py^2*Qx^2*Rx*Ry^3 + 24*Px*Py*Qx*Qy*Rx*Ry^3 - 30*Py*Qx^2*Qy*Rx*Ry^3 + 30*Px^2*Qy^2*Rx*Ry^3 + 9*Qx^2*Qy^2*Rx*Ry^3 - 9*Py^2*Qx*Rx^2*Ry^3 - 12*Px*Py*Qy*Rx^2*Ry^3 + 6*Py*Qx*Qy*Rx^2*Ry^3 + 3*Qx*Qy^2*Rx^2*Ry^3 + 3*Py^2*Rx^3*Ry^3 + 6*Py*Qy*Rx^3*Ry^3 - 15*Qy^2*Rx^3*Ry^3 + 3*Px*Py*Qx^2*Ry^4 - 6*Py*Qx^3*Ry^4 + 15*Px^2*Qx*Qy*Ry^4 + 6*Qx^3*Qy*Ry^4 - 6*Px*Py*Qx*Rx*Ry^4 + 12*Py*Qx^2*Rx*Ry^4 - 15*Px^2*Qy*Rx*Ry^4 - 15*Qx^2*Qy*Rx*Ry^4 + 3*Px*Py*Rx^2*Ry^4 - 6*Py*Qx*Rx^2*Ry^4 - 3*Qx*Qy*Rx^2*Ry^4 + 12*Qy*Rx^3*Ry^4 - 3*Px^2*Qx*Ry^5 - 3*Qx^3*Ry^5 + 3*Px^2*Rx*Ry^5 + 6*Qx^2*Rx*Ry^5 - 3*Rx^3*Ry^5 + Py*Qy^6 + Qy^7 - 6*Py*Qy^5*Ry - 5*Qy^6*Ry + 15*Py*Qy^4*Ry^2 + 9*Qy^5*Ry^2 - 20*Py*Qy^3*Ry^3 - 5*Qy^4*Ry^3 + 15*Py*Qy^2*Ry^4 - 5*Qy^3*Ry^4 - 6*Py*Qy*Ry^5 + 9*Qy^2*Ry^5 + Py*Ry^6 - 5*Qy*Ry^6 + Ry^7)/(-Px^3*Qx^6 - 3*Px^2*Qx^7 - 3*Px*Qx^8 - Qx^9 + 6*Px^3*Qx^5*Rx + 15*Px^2*Qx^6*Rx + 12*Px*Qx^7*Rx + 3*Qx^8*Rx - 15*Px^3*Qx^4*Rx^2 - 27*Px^2*Qx^5*Rx^2 - 12*Px*Qx^6*Rx^2 + 20*Px^3*Qx^3*Rx^3 + 15*Px^2*Qx^4*Rx^3 - 12*Px*Qx^5*Rx^3 - 8*Qx^6*Rx^3 - 15*Px^3*Qx^2*Rx^4 + 15*Px^2*Qx^3*Rx^4 + 30*Px*Qx^4*Rx^4 + 6*Qx^5*Rx^4 + 6*Px^3*Qx*Rx^5 - 27*Px^2*Qx^2*Rx^5 - 12*Px*Qx^3*Rx^5 + 6*Qx^4*Rx^5 - Px^3*Rx^6 + 15*Px^2*Qx*Rx^6 - 12*Px*Qx^2*Rx^6 - 8*Qx^3*Rx^6 - 3*Px^2*Rx^7 + 12*Px*Qx*Rx^7 - 3*Px*Rx^8 + 3*Qx*Rx^8 - Rx^9 + 3*Px^2*Qx^4*Qy^2 + 6*Px*Qx^5*Qy^2 + 3*Qx^6*Qy^2 - 12*Px^2*Qx^3*Qy^2*Rx - 18*Px*Qx^4*Qy^2*Rx - 6*Qx^5*Qy^2*Rx + 18*Px^2*Qx^2*Qy^2*Rx^2 + 12*Px*Qx^3*Qy^2*Rx^2 - 3*Qx^4*Qy^2*Rx^2 - 12*Px^2*Qx*Qy^2*Rx^3 + 12*Px*Qx^2*Qy^2*Rx^3 + 12*Qx^3*Qy^2*Rx^3 + 3*Px^2*Qy^2*Rx^4 - 18*Px*Qx*Qy^2*Rx^4 - 3*Qx^2*Qy^2*Rx^4 + 6*Px*Qy^2*Rx^5 - 6*Qx*Qy^2*Rx^5 + 3*Qy^2*Rx^6 - 6*Px^2*Qx^4*Qy*Ry - 12*Px*Qx^5*Qy*Ry - 6*Qx^6*Qy*Ry + 24*Px^2*Qx^3*Qy*Rx*Ry + 36*Px*Qx^4*Qy*Rx*Ry + 12*Qx^5*Qy*Rx*Ry - 36*Px^2*Qx^2*Qy*Rx^2*Ry - 24*Px*Qx^3*Qy*Rx^2*Ry + 6*Qx^4*Qy*Rx^2*Ry + 24*Px^2*Qx*Qy*Rx^3*Ry - 24*Px*Qx^2*Qy*Rx^3*Ry - 24*Qx^3*Qy*Rx^3*Ry - 6*Px^2*Qy*Rx^4*Ry + 36*Px*Qx*Qy*Rx^4*Ry + 6*Qx^2*Qy*Rx^4*Ry - 12*Px*Qy*Rx^5*Ry + 12*Qx*Qy*Rx^5*Ry - 6*Qy*Rx^6*Ry + 3*Px^2*Qx^4*Ry^2 + 6*Px*Qx^5*Ry^2 + 3*Qx^6*Ry^2 - 12*Px^2*Qx^3*Rx*Ry^2 - 18*Px*Qx^4*Rx*Ry^2 - 6*Qx^5*Rx*Ry^2 + 18*Px^2*Qx^2*Rx^2*Ry^2 + 12*Px*Qx^3*Rx^2*Ry^2 - 3*Qx^4*Rx^2*Ry^2 - 12*Px^2*Qx*Rx^3*Ry^2 + 12*Px*Qx^2*Rx^3*Ry^2 + 12*Qx^3*Rx^3*Ry^2 + 3*Px^2*Rx^4*Ry^2 - 18*Px*Qx*Rx^4*Ry^2 - 3*Qx^2*Rx^4*Ry^2 + 6*Px*Rx^5*Ry^2 - 6*Qx*Rx^5*Ry^2 + 3*Rx^6*Ry^2 - 3*Px*Qx^2*Qy^4 - 3*Qx^3*Qy^4 + 6*Px*Qx*Qy^4*Rx + 3*Qx^2*Qy^4*Rx - 3*Px*Qy^4*Rx^2 + 3*Qx*Qy^4*Rx^2 - 3*Qy^4*Rx^3 + 12*Px*Qx^2*Qy^3*Ry + 12*Qx^3*Qy^3*Ry - 24*Px*Qx*Qy^3*Rx*Ry - 12*Qx^2*Qy^3*Rx*Ry + 12*Px*Qy^3*Rx^2*Ry - 12*Qx*Qy^3*Rx^2*Ry + 12*Qy^3*Rx^3*Ry - 18*Px*Qx^2*Qy^2*Ry^2 - 18*Qx^3*Qy^2*Ry^2 + 36*Px*Qx*Qy^2*Rx*Ry^2 + 18*Qx^2*Qy^2*Rx*Ry^2 - 18*Px*Qy^2*Rx^2*Ry^2 + 18*Qx*Qy^2*Rx^2*Ry^2 - 18*Qy^2*Rx^3*Ry^2 + 12*Px*Qx^2*Qy*Ry^3 + 12*Qx^3*Qy*Ry^3 - 24*Px*Qx*Qy*Rx*Ry^3 - 12*Qx^2*Qy*Rx*Ry^3 + 12*Px*Qy*Rx^2*Ry^3 - 12*Qx*Qy*Rx^2*Ry^3 + 12*Qy*Rx^3*Ry^3 - 3*Px*Qx^2*Ry^4 - 3*Qx^3*Ry^4 + 6*Px*Qx*Rx*Ry^4 + 3*Qx^2*Rx*Ry^4 - 3*Px*Rx^2*Ry^4 + 3*Qx*Rx^2*Ry^4 - 3*Rx^3*Ry^4 + Qy^6 - 6*Qy^5*Ry + 15*Qy^4*Ry^2 - 20*Qy^3*Ry^3 + 15*Qy^2*Ry^4 - 6*Qy*Ry^5 + Ry^6), 1)