Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
79 views
#MrG 2017.1129 905 What Is The Dot Product? #1) v.dot_product(w)=vx*wx+vy*wy v=vector([2,-3]) w=vector([5,3]) show(v) show(w) show(v.dot_product(w))
(2,3)\displaystyle \left(2,\,-3\right)
(5,3)\displaystyle \left(5,\,3\right)
1\displaystyle 1
#2) T/F: v.dot_product(w)==w.dot_product(v)? show(w.dot_product(v)) show(bool(v.dot_product(w)==w.dot_product(v)))
1\displaystyle 1
True\displaystyle \mathrm{True}
#3) T/F: abs(v)==sqrt(v.dot_product(v))? show(abs(v)) show(sqrt(v.dot_product(v)))
13\displaystyle \sqrt{13}
13\displaystyle \sqrt{13}
#4) T/F: abs(w)==sqrt(w.dot_product(w))? show(abs(w)) show(sqrt(w.dot_product(w)))
34\displaystyle \sqrt{34}
34\displaystyle \sqrt{34}
#5) v.dot_product(w)==abs(v)*abs(w)*cos(t), find t? var('t') show(v.dot_product(w)) show(abs(v)*abs(w)*cos(t)) equ=v.dot_product(w)==abs(v)*abs(w)*cos(t) show(equ) show(((solve(equ,t)[0].rhs())*180/pi).n()) pv=plot(v,color='cyan') pw=plot(w,color='magenta') show(pv+pw,aspect_ratio=1)
t
1\displaystyle 1
3413cos(t)\displaystyle \sqrt{34} \sqrt{13} \cos\left(t\right)
1=3413cos(t)\displaystyle 1 = \sqrt{34} \sqrt{13} \cos\left(t\right)
87.2736890060937\displaystyle 87.2736890060937