CoCalc provides the best real-time collaborative environment for Jupyter Notebooks, LaTeX documents, and SageMath, scalable from individual use to large groups and classes! Also, H100 GPUs starting at $2/hour.
CoCalc provides the best real-time collaborative environment for Jupyter Notebooks, LaTeX documents, and SageMath, scalable from individual use to large groups and classes! Also, H100 GPUs starting at $2/hour.
| Download
Project: Software 20.04
Path: taichi-test.ipynb
Views: 82Image: ubuntu2004-dev
Kernel: Python 3 (system-wide)
taichi
Julia Set
In [6]:
(0, 8, 4)
In [4]:
In [21]:
<matplotlib.image.AxesImage at 0x7f9bd17a93a0>
In [18]:
In [0]:
Gradient/Residual
In [2]:
[Taichi] Starting on arch=x64
In [3]:
Loss = 1.1389164924621582
Loss = 0.9225223660469055
Loss = 0.7472430467605591
Loss = 0.6052669286727905
Loss = 0.49026617407798767
Loss = 0.3971155881881714
Loss = 0.32166361808776855
Loss = 0.26054754853248596
Loss = 0.21104347705841064
Loss = 0.1709452122449875
Loss = 0.13846561312675476
Loss = 0.11215715110301971
Loss = 0.09084729105234146
Loss = 0.07358631491661072
Loss = 0.059604912996292114
Loss = 0.04827997088432312
Loss = 0.03910677134990692
Loss = 0.031676482409238815
Loss = 0.02565794810652733
Loss = 0.020782940089702606
Loss = 0.016834180802106857
Loss = 0.013635682873427868
Loss = 0.01104490365833044
Loss = 0.008946369402110577
Loss = 0.007246557157486677
Loss = 0.005869708489626646
Loss = 0.0047544632107019424
Loss = 0.003851114772260189
Loss = 0.0031194020994007587
Loss = 0.002526714699342847
Loss = 0.0020466384012252092
Loss = 0.0016577770002186298
Loss = 0.0013428000966086984
Loss = 0.0010876673040911555
Loss = 0.000881010724697262
Loss = 0.0007136187632568181
Loss = 0.0005780311767011881
Loss = 0.0004682051367126405
Loss = 0.0003792463685385883
Loss = 0.0003071892133448273
Loss = 0.0002488234604243189
Loss = 0.0002015464415308088
Loss = 0.00016325234901160002
Loss = 0.00013223463611211628
Loss = 0.00010711004870245233
Loss = 8.675886056153104e-05
Loss = 7.027461106190458e-05
Loss = 5.692265403922647e-05
Loss = 4.610730684362352e-05
Loss = 3.7346715544117615e-05
Loss = 3.0250737836468033e-05
Loss = 2.4502987798769027e-05
Loss = 1.9847540897899307e-05
Loss = 1.607660306035541e-05
Loss = 1.302214150200598e-05
Loss = 1.0547945748839993e-05
Loss = 8.54378959047608e-06
Loss = 6.920437499502441e-06
Loss = 5.605516435025493e-06
Loss = 4.540357167570619e-06
Loss = 3.6777394143427955e-06
Loss = 2.9789539439661894e-06
Loss = 2.412929234196781e-06
Loss = 1.9545054783520754e-06
Loss = 1.583156290507759e-06
Loss = 1.282345010622521e-06
Loss = 1.0386710300736013e-06
Loss = 8.413223895331612e-07
Loss = 6.814877338001679e-07
Loss = 5.520000740943942e-07
Loss = 4.4713519287142844e-07
Loss = 3.6216951571077516e-07
Loss = 2.933398377535923e-07
Loss = 2.3759915279697452e-07
Loss = 1.9243580595684762e-07
Loss = 1.5587072255129897e-07
Loss = 1.2625341128114087e-07
Loss = 1.0226438718063946e-07
Loss = 8.283029728772817e-08
Loss = 6.708797428700564e-08
Loss = 5.434258198988573e-08
Loss = 4.4016012168413e-08
Loss = 3.565469341992866e-08
Loss = 2.8875057012101024e-08
Loss = 2.3388583514361017e-08
Loss = 1.8945989666008245e-08
Loss = 1.5343122328204117e-08
Loss = 1.2429103968258914e-08
Loss = 1.006759031696447e-08
Loss = 8.154136033056147e-09
Loss = 6.6053913450048185e-09
Loss = 5.351447285306676e-09
Loss = 4.335420911161236e-09
Loss = 3.5109328777593873e-09
Loss = 2.8445414912425804e-09
Loss = 2.304052504342735e-09
Loss = 1.8671542090231696e-09
Loss = 1.5122422203361907e-09
Loss = 1.2247408642807045e-09
Loss = 9.919919330414473e-10
0.05810321867465973 0.058101363480091095
0.9867505431175232 0.9867596626281738
0.803779125213623 0.8037930130958557
0.9251376986503601 0.9251614809036255
0.26498156785964966 0.26496800780296326
0.06710710376501083 0.06708946079015732
0.1637413501739502 0.1637296825647354
0.8130745887756348 0.8130860924720764
In [0]: