Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
22144 views
1
\documentclass[pdf,sprung,slideColor,nocolorBG]{beamer}
2
%
3
%\documentclass[hyperref={pdfpagelabels=false}]{beamer}
4
\mode<presentation>
5
6
\newenvironment{colortheme}[1]{
7
\def\ProvidesPackageRCS $##1${\relax}
8
\renewcommand{\ProcessOptions}{\relax}
9
\makeatletter
10
\input beamercolortheme#1.sty
11
\makeatother
12
}{}
13
14
\let\Tiny=\tiny
15
\usetheme{Adelaide}
16
\usefonttheme[stillsansseriftext]{serif}
17
\setbeamerfont{structure}{series=\bfseries}
18
\setbeamertemplate{frametitle}[default][center]
19
\usepackage[figurename={}]{caption}
20
\usepackage[latin1]{inputenc}
21
%\usepackage{amsmath} %needed for \begin{align}... \end{align} environment
22
\usepackage{amsfonts}
23
\usepackage{amssymb}
24
%\usepackage{amscd}
25
%\usepackage[all]{xy}
26
\usepackage{xcolor}
27
\usepackage{enumerate}
28
%
29
\newcommand{\slidecite}[1]{\tiny{(#1)}\normalsize{}}
30
\newcommand{\smallcite}[1]{\small{(#1)}\normalsize{}}
31
32
\newcommand{\mb}[1]{\mathbb{#1}}
33
\newcommand{\mf}[1]{\mathbf{#1}}
34
\newcommand{\Emph}[1]{\emph{\textcolor{blue}{#1}}}
35
\newcommand{\Red}[1]{\mathbf{\textcolor{red}{#1}}}
36
37
\newcommand{\abs}[1]{\left| #1 \right|}
38
\newcommand{\norm}[1]{\left\| #1 \right\|}
39
\newcommand{\To}{\rightarrow}
40
41
\newcommand{\Cay}[1]{\operatorname{Cay}\left(#1\right)}
42
\newcommand{\Clique}[1]{\omega\left(#1\right)}
43
\newcommand{\dual}[1]{\widetilde{#1}}
44
\newcommand{\support}[1]{\operatorname{supp}\left(#1\right)}
45
\newcommand{\weight}[1]{\operatorname{wt}\left(#1\right)}
46
\newcommand{\weightclass}[1]{\operatorname{wc}\left(#1\right)}
47
48
\newcommand{\F}{\mb{F}}
49
\newcommand{\G}{\mb{G}}
50
\newcommand{\R}{\mb{R}}
51
\newcommand{\Z}{\mb{Z}}
52
\newtheorem{Def}{Definition}
53
\newtheorem{Conjecture}{Conjecture}
54
\newtheorem{Question}{Question}
55
\newtheorem{Proposition}{Proposition}
56
57
\title{Classifying bent functions}
58
\author{Paul Leopardi}
59
60
\date{For University of Melbourne
61
\\
62
October 2017}
63
64
\institute{University of Melbourne
65
\\
66
Australian Government - Bureau of Meteorology}
67
\titlegraphic{
68
%\includegraphics[angle=0,width=10mm]{../../common/beamer-anu-colourlogo.png}
69
%\includegraphics[angle=0,width=20mm]{../../common/carma_logo.jpg}
70
}
71
\begin{document}
72
73
\frame{\titlepage}
74
\begin{frame}
75
\frametitle{Acknowledgements}
76
\begin{center}
77
Nathan Clisby,
78
Robert Craigen,
79
Joanne Hall,
80
David Joyner, Philippe Langevin, William Martin,
81
Padraig {\'O} Cath{\'a}in,
82
Judy-anne Osborn, Dima Pasechnik and William Stein.
83
84
~
85
86
kodlu on MathOverflow.
87
88
~
89
90
Matthew Leingang for Beamer colour themes.
91
92
~
93
94
Australian National University. University of Newcastle, Australia. University of Melbourne.
95
96
~
97
98
Australian Government - Bureau of Meteorology.
99
100
~
101
102
SageMath, Bliss, Nauty.
103
\end{center}
104
\end{frame}
105
106
\begin{frame}
107
\frametitle{Overview}
108
%\begin{center}
109
\begin{itemize}
110
\item
111
Preliminaries.
112
113
~
114
115
\item
116
Cayley graphs and linear codes.
117
118
~
119
120
\item
121
Equivalence of bent functions.
122
123
~
124
125
\item
126
Block designs.
127
128
~
129
130
\item
131
Computational results for low dimensions.
132
133
~
134
135
\item
136
Questions.
137
138
~
139
140
\item
141
Source code and documentation.
142
\end{itemize}
143
144
%\end{center}
145
\end{frame}
146
147
\section{Preliminaries}
148
149
\begin{colortheme}{jubata}
150
151
\begin{frame}
152
\frametitle{Motivation}
153
154
In a construction for Hada\-mard matrices, I encountered
155
two sequences of \Emph{bent} Boolean functions,
156
\begin{align*}
157
\sigma_m &: \F_2^{2m} \To \F_2, \quad \tau_m : \F_2^{2m} \To \F_2,
158
\end{align*}
159
whose Cayley graphs are \Emph{strongly regular} with parameters
160
\begin{align*}
161
(v,k,\lambda,\mu) &= (4^m, 2^{2 m - 1} - 2^{m-1}, 2^{2 m - 2} - 2^{m-1}, 2^{2 m - 2} - 2^{m-1}),
162
\end{align*}
163
but the graphs for $\sigma_m$ and $\tau_m$ are isomorphic only when
164
165
$m=1,2$ or $3.$
166
167
~
168
169
Question: \Emph{Which strongly regular graphs arise as Cayley graphs of bent Boolean functions?}
170
\end{frame}
171
\end{colortheme}
172
173
\begin{colortheme}{seagull}
174
175
\begin{frame}
176
\frametitle{Bent functions}
177
% Bent functions can be defined in a number of equivalent ways.
178
% The definition used here involves the Walsh Hadamard Transform.
179
\begin{Def}
180
\label{def-Walsh-Hadamard-transform}
181
The Walsh Hadamard transform of
182
a Boolean function $f : \F_2^{2m} \To \F_2$ is
183
\begin{align*}
184
W_f(x)
185
&:=
186
\sum_{y \in \F_2^{2m}} (-1)^{f(y) + \langle x, y \rangle}
187
\end{align*}
188
\end{Def}
189
190
\begin{Def}
191
\label{def-Bent-function}
192
A Boolean function $f : \F_2^{2m} \To \F_2$ is \Emph{bent}
193
if and only if its Walsh Hada\-mard transform has constant absolute value $2^{m}$.
194
% \cite[p. 74]{Dil74}
195
% \cite[p. 300]{Rot76}.
196
\end{Def}
197
\slidecite{Dillon 1974; Rothaus 1976}
198
\end{frame}
199
\begin{frame}
200
\frametitle{Dual bent functions}
201
202
\begin{Def}
203
\label{def-dual-Bent-function}
204
For a bent function $f : \F_2^{2m} \To \F_2$, the function $\dual{f}$, defined by
205
\begin{align*}
206
(-1)^{\dual{f}(x)} &:= 2^{-m} W_f(x)
207
\end{align*}
208
is called the \Emph{dual} of $f$.
209
\end{Def}
210
211
~
212
213
The function $\dual{f}$ is also a bent function on $\F_2^{2m}$.
214
215
~
216
217
\slidecite{Dillon 1974; Rothaus 1976}
218
\end{frame}
219
220
\begin{frame}
221
\frametitle{Example}
222
223
The function $f : \F_2^2 \To \F_2$ defined by $f(x) := x_0 x_1$
224
is bent, since
225
\begin{align*}
226
W_f(x)
227
=&
228
\sum_{y \in \F_2^2} (-1)^{f(y) + \langle x, y \rangle}
229
\\
230
=&\ (-1)^{f(0,0) + \langle x, (0,0) \rangle}
231
+ (-1)^{f(1,0) + \langle x, (1,0) \rangle} +
232
\\
233
\phantom{=}&\ (-1)^{f(0,1) + \langle x, (0,1) \rangle}
234
+ (-1)^{f(1,1) + \langle x, (1,1) \rangle}
235
\\
236
=&\ (-1)^{0 + 0} + (-1)^{0 + x_0} + (-1)^{0 + x_1} + (-1)^{1 + x_0 + x_1}
237
\\
238
=&\ 1 + (-1)^{x_0} + (-1)^{x_1} - (-1)^{x_0 + x_1}
239
\\
240
=&\ 2 \times (-1)^{f(x)},
241
\end{align*}
242
so $\dual{f} = f$, and $f$ is \Emph{self-dual}.
243
%
244
\end{frame}
245
246
\begin{frame}
247
\frametitle{Bent functions and affine functions}
248
Bent functions are at maximum Hamming distance from affine functions.
249
For $f : \F_2^2 \To \F_2,$ this distance is 1 \slidecite{Meier and Staffelbach 1989}.
250
\scriptsize{}
251
\begin{align*}
252
\begin{array}{|cccc|}
253
\hline
254
(0,0)& (1,0)& (0,1)& (1,1)
255
\\
256
\hline
257
0 & 0 & 0 & 0
258
\\
259
\Red{0}& \Red{0} & \Red{0} & \Red{1}
260
\\
261
\Red{0}& \Red{0} & \Red{1} & \Red{0}
262
\\
263
0 & 0 & 1 & 1
264
\\
265
\Red{0}& \Red{1} & \Red{0} & \Red{0}
266
\\
267
0 & 1 & 0 & 1
268
\\
269
0 & 1 & 1 & 0
270
\\
271
\Red{0}& \Red{1} & \Red{1} & \Red{1}
272
\\
273
\Red{1}& \Red{0} & \Red{0} & \Red{0}
274
\\
275
1 & 0 & 0 & 1
276
\\
277
1 & 0 & 1 & 0
278
\\
279
\Red{1}& \Red{0} & \Red{1} & \Red{1}
280
\\
281
1 & 1 & 0 & 0
282
\\
283
\Red{1}& \Red{1} & \Red{0} & \Red{1}
284
\\
285
\Red{1}& \Red{1} & \Red{1} & \Red{0}
286
\\
287
1 & 1 & 1 & 1
288
\\
289
\hline
290
\end{array}
291
\end{align*}
292
\normalsize{}
293
\end{frame}
294
295
\end{colortheme}
296
297
\begin{colortheme}{jubata}
298
299
\begin{frame}
300
\frametitle{Weights and weight classes}
301
\begin{Def}
302
The \Emph{weight} of a binary function is the cardinality of its \Emph{support}.
303
For $f$ on $\F_2^{2m}$
304
\begin{align*}
305
\support{f} &:= \{x \in \F_2^{2m} \mid f(x)=1 \}.
306
\end{align*}
307
308
A bent function $f$ on $\F_2^{2m}$ has weight
309
\begin{align*}
310
\weight{f} &= 2^{2 m - 1} - 2^{m-1} \quad (\text{weight class~} \weightclass{f}=0), \text{~or}
311
\\
312
\weight{f} &= 2^{2 m - 1} + 2^{m-1} \quad (\text{weight class~} \weightclass{f}=1).
313
\end{align*}
314
% If $f(0)=0$ then $\weightclass{\Cay{f}} := \weightclass{f}$.
315
\end{Def}
316
\end{frame}
317
318
\end{colortheme}
319
320
\section{Cayley graphs and linear codes}
321
322
\begin{colortheme}{seagull}
323
324
\begin{frame}
325
\frametitle{The Cayley graph of a Boolean function}
326
%\begin{center}
327
The \Emph{Cayley graph} $\Cay{f}$ of a Boolean function
328
329
~
330
331
\begin{align*}
332
%
333
f : \F_2^n \To \F_2 \quad \text{where} \quad f(0) = 0
334
%
335
\end{align*}
336
337
~
338
339
is
340
an undirected graph with
341
342
\begin{align*}
343
V(\Cay{f}) &:= \F_2^n, \quad (x,y) \in E(\Cay{f}) \Leftrightarrow f(x+y) = 1.
344
\end{align*}
345
346
~
347
348
\slidecite{Bernasconi and Codenotti 1999}
349
\end{frame}
350
351
\begin{frame}
352
\frametitle{Strongly regular graphs}
353
%\begin{center}
354
A simple graph $\Gamma$ of order $v$ is \Emph{strongly regular} with parameters
355
$(v,k,\lambda,\mu)$ if
356
357
~
358
359
\begin{itemize}
360
\item
361
each vertex has degree $k,$
362
363
~
364
\item
365
each adjacent pair of vertices has $\lambda$ common neighbours, and
366
367
~
368
\item
369
each nonadjacent pair of vertices has $\mu$ common neighbours.
370
\end{itemize}
371
372
~
373
374
\slidecite{Brouwer, Cohen and Neumaier 1989}
375
376
%\end{center}
377
\end{frame}
378
379
\begin{frame}
380
\frametitle{Bent functions and strongly regular graphs}
381
382
\begin{Proposition}
383
\smallcite{Bernasconi and Codenotti 1999}
384
385
The Cayley graph $\Cay{f}$ of a bent function $f$ on $\F_2^{2m}$
386
387
with $f(0)=0$ is a strongly regular graph with $\lambda = \mu.$
388
\end{Proposition}
389
390
The parameters of $\Cay{f}$ are
391
\begin{align*}
392
(v,k,\lambda) = &(4^m, 2^{2 m - 1} - 2^{m-1}, 2^{2 m - 2} - 2^{m-1})
393
\\
394
\text{or} \quad &(4^m, 2^{2 m - 1} + 2^{m-1}, 2^{2 m - 2} + 2^{m-1}).
395
\end{align*}
396
397
~
398
399
\slidecite{Menon 1962; Dillon 1974; Bernasconi and Codenotti 1999}
400
%\end{center}
401
\end{frame}
402
403
\begin{frame}
404
\frametitle{Projective two-weight binary codes}
405
406
\begin{Def}
407
A \Emph{two-weight binary code} with parameters $[n,k,d]$ is a $k$ dimensional subspace of $\F_2^n$
408
with
409
minimum Hamming distance $d$, such that the set of Hamming weights of the non-zero vectors has size
410
2.
411
412
~
413
414
``A \Emph{generator matrix} $G$ of a linear code $[n, k]$ code $C$ is any matrix
415
of rank $k$ (over $\F_2$) with rows from $C.$''
416
417
~
418
419
``A linear $[n, k]$ code is called \Emph{projective} if no two columns of a generator matrix
420
$G$ are linearly dependent, i.e., if the columns of $G$ are pairwise different points in a
421
projective $(k-1)$-dimensional space.''
422
In the case of $\F_2$, no two columns are equal.
423
424
~
425
426
\end{Def}
427
428
\slidecite{Tonchev 1996; Bouyukliev, Fack, Willems and Winne 2006}
429
430
\end{frame}
431
432
\begin{frame}
433
\frametitle{From bent function to linear code (1)}
434
\begin{Def}
435
436
\smallcite{Carlet 2007; Ding and Ding 2015, Corollary 10}
437
438
For a bent function $f : \F_2^{2m} \To \F_2$,
439
define the linear code $C(f)$ by the generator matrix
440
\begin{align*}
441
M C(f) &\in \F_2^{4^m \times \weight{f}},
442
\\
443
M C(f)_{x,y} &:= \langle x, \support{f}(y) \rangle,
444
\end{align*}
445
with $x$ in lexicographic order of $\F_2^{2m}$
446
and $\support{f}(y)$ in lexicographic order of $\support{f}$.
447
448
The $4^m$ words of the code $C(f)$ are the rows of the generator matrix $M C(f)$.
449
\end{Def}
450
451
\slidecite{Carlet 2007; Ding and Ding 2015, Corollary 10}
452
453
\end{frame}
454
\begin{frame}
455
\frametitle{From bent function to linear code (2)}
456
\begin{Proposition}
457
\smallcite{Carlet 2007, Prop. 20; Ding and Ding 2015, Corollary 10}
458
459
For a bent function $f : \F_2^{2m} \To \F_2$, the linear code $C(f)$
460
is a projective two-weight code.
461
462
~
463
464
The possible weights of non-zero code words are:
465
\begin{align*}
466
\begin{cases}
467
2^{2m-2}, 2^{2m-2} - 2^{m-1} & \text{if~} \weightclass{f}=0.
468
\\
469
2^{2m-2}, 2^{2m-2} + 2^{m-1} & \text{if~} \weightclass{f}=1.
470
\end{cases}
471
\end{align*}
472
473
\end{Proposition}
474
475
\slidecite{Carlet 2007, Prop. 20; Ding and Ding 2015, Corollary 10}
476
477
\end{frame}
478
479
\begin{frame}
480
\frametitle{From linear code to strongly regular graph}
481
\begin{Def}
482
\label{R-f-def}
483
Given $f : \F_2^{2m} \To \F_2$, form the linear code $C(f)$.
484
485
The graph $R(f)$ is defined as:
486
487
Vertices of $R(f)$ are code words of $C(f)$.
488
489
For $v,w \in C(f)$, edge $(u,v) \in R(f)$ if and only if
490
\begin{align*}
491
\begin{cases}
492
\weight{u+v} = 2^{2m-2} - 2^{m-1} & (\text{if~}\weightclass{f}=0).
493
\\
494
\weight{u+v} = 2^{2m-2} + 2^{m-1} & (\text{if~}\weightclass{f}=1).
495
\end{cases}
496
\end{align*}
497
498
\end{Def}
499
Since $C(f)$ is a projective two-weight code,
500
$R(f)$ is a strongly regular graph.
501
502
\slidecite{Delsarte 1972, Theorem 2}
503
\end{frame}
504
505
\end{colortheme}
506
507
\begin{colortheme}{jubata}
508
509
\begin{frame}
510
\frametitle{The strongly regular graph $R(f)$ is \\ the Cayley graph of the dual}
511
512
\begin{Theorem}
513
For $f : \F_2^{2m} \To \F_2$, with $f(0)=0$,
514
\begin{align*}
515
R(f) &\equiv \Cay{\dual{f} + \dual{f}(0)} = \Cay{\dual{f} + \weightclass{f}}.
516
\end{align*}
517
\end{Theorem}
518
519
\end{frame}
520
521
\end{colortheme}
522
523
\section{Equivalence of bent functions}
524
525
\begin{colortheme}{seagull}
526
527
\begin{frame}
528
\frametitle{Extended affine equivalence}
529
530
\begin{Def}
531
For bent functions $f,g : \F_2^{2m} \To \F_2$,
532
533
$f$ is \Emph{extended affine equivalent} to $g$ if and only if
534
\begin{align*}
535
g(x) &= f(A x + b) + \langle c, x \rangle + \delta
536
\end{align*}
537
for some $A \in GL(2m,2)$, $b, c \in \F_2^{2m}$, $\delta \in \F_2$.
538
\end{Def}
539
~
540
541
\slidecite{Budaghyan, Carlet and Pott 2006; Carlet and Mesnager 2011}
542
\end{frame}
543
544
\end{colortheme}
545
546
\begin{colortheme}{jubata}
547
548
\begin{frame}
549
\frametitle{General linear equivalence}
550
551
\begin{Def}
552
For bent functions $f,g : \F_2^{2m} \To \F_2$,
553
$f$ is \Emph{general linear equivalent} to $g$ if and only if
554
\begin{align*}
555
g(x) &= f(A x)
556
\end{align*}
557
for some $A \in GL(2m,2)$.
558
\end{Def}
559
\end{frame}
560
\begin{frame}
561
\frametitle{Extended translation equivalence}
562
563
\begin{Def}
564
For bent functions $f,g : \F_2^{2m} \To \F_2$,
565
566
$f$ is \Emph{extended translation equivalent} to $g$ if and only if
567
\begin{align*}
568
g(x) &= f(x + b) + \langle c, x \rangle + \delta
569
\end{align*}
570
for $b, c \in \F_2^{2m}$, $\delta \in \F_2$.
571
\end{Def}
572
\end{frame}
573
574
\begin{frame}
575
\frametitle{Cayley equivalence}
576
\begin{Def}
577
%
578
For $f, g : \F_2^{2m} \To \F_2$, with both $f$ and $g$ bent,
579
580
we call $f$ and $g$ \Emph{Cayley equivalent},
581
and write $f \equiv g$,
582
583
if and only if $f(0)=g(0)=0$ and $\Cay{f} \equiv \Cay{g}$ as graphs.
584
585
~
586
587
Equivalently, $f \equiv g$ if and only if $f(0)=g(0)=0$ and
588
589
there exists a bijection $\pi : \F_2^{2m} \To \F_2^{2m}$ such that
590
\begin{align*}
591
g(x+y) &= f \big(\pi(x)+\pi(y)\big) \quad \text{for all~} x,y \in \F_2^{2m}.
592
\end{align*}
593
\end{Def}
594
\end{frame}
595
\begin{frame}
596
\frametitle{Extended Cayley equivalence}
597
\begin{Def}
598
For $f, g : \F_2^{2m} \To \F_2$, with both $f$ and $g$ bent,
599
600
if there exist $\delta, \epsilon \in \{0,1\}$ such that $f + \delta \equiv g + \epsilon$,
601
602
we call $f$ and $g$ \Emph{extended Cayley (EC) equivalent} and write $f \cong g$.
603
\end{Def}
604
Extended Cayley equivalence is an equivalence relation on the set of all bent functions on $\F_2^{2m}$.
605
\end{frame}
606
607
\begin{frame}
608
\frametitle{General linear equivalence \\ implies Cayley equivalence}
609
610
\begin{Theorem}
611
If $f$ is bent with $f(0)=0$ and $g(x) := f(A x)$ where $A \in GL(2m,2)$,
612
then $g$ is bent with $g(0)=0$ and $f \equiv g$.
613
\end{Theorem}
614
\begin{proof}
615
\begin{align*}
616
g(x+y) &= f\big(A(x+y)\big) = f(A x + A y)\quad \text{for all~} x,y \in \F_2^{2m}.
617
\end{align*}
618
\end{proof}
619
620
\end{frame}
621
622
\begin{frame}
623
\frametitle{Extended affine, extended translation, and extended Cayley equivalence (1)}
624
625
\begin{Theorem}
626
For $A \in GL(2m,2)$, $b, c \in \F_2^{2m}$, $\delta \in \F_2$,
627
$f : \F_2^{2m} \To \F_2$,
628
629
the function
630
\begin{align*}
631
h(x) &:= f(A x + b) + \langle c, x \rangle + \delta
632
\intertext{can be expressed as $h(x) = g(A x)$ where}
633
g(x) &:= f(x+b) + \langle (A^{-1})^T c, x \rangle + \delta,
634
\end{align*}
635
and therefore if $f$ is bent then $h \cong g$.
636
\end{Theorem}
637
\end{frame}
638
639
\begin{frame}
640
\frametitle{Extended affine, extended translation, and extended Cayley equivalence (2)}
641
642
Therefore, to determine the extended Cayley equivalence classes within the extended affine equivalence class of
643
a bent function $f : \F_2^{2m} \To \F_2$, for which $f(0)=0$, we need only examine
644
the extended translation equivalent functions of the form
645
\begin{align*}
646
f(x+b) + \langle c, x \rangle + f(b),
647
\end{align*}
648
for each $b, c \in \F_2^{2m}$.
649
\end{frame}
650
651
\begin{frame}
652
\frametitle{Quadratic bent functions have two \\ extended Cayley classes}
653
\begin{Theorem}
654
For each $m>0$, the extended affine equivalence class of quadratic bent functions
655
$q : \F_2^{2m} \To \F_2$ contains exactly two extended Cayley equivalence classes,
656
corresponding to the two possible weight classes of $x \mapsto q(x+b) + \langle c, x \rangle + q(b)$.
657
\end{Theorem}
658
659
\end{frame}
660
661
\end{colortheme}
662
663
\section{Computational results for quadratic bent functions in low dimensions}
664
665
\begin{colortheme}{jubata}
666
667
\begin{frame}
668
\frametitle{For 2 dimensions: quadratic case: $[f_{2,1}]$}
669
\begin{figure}
670
\centering
671
\begin{minipage}{.48\textwidth}
672
\centering
673
\includegraphics[width=.9\linewidth]{../matrix_plot/c2_1_bent_cayley_graph_index_matrix.png}
674
\captionof{figure}{$[f_{2,1}]$: 2 extended Cayley classes}
675
\label{fig:q2_1_bent_cayley_graph_index_matrix}
676
\end{minipage}
677
\end{figure}
678
\end{frame}
679
\begin{frame}
680
\frametitle{For 4 dimensions: quadratic case: $[f_{4,1}]$}
681
\begin{figure}
682
\centering
683
\begin{minipage}{.48\textwidth}
684
\centering
685
\includegraphics[width=.9\linewidth]{../matrix_plot/c4_1_bent_cayley_graph_index_matrix.png}
686
\captionof{figure}{$[f_{4,1}]$: 2 extended Cayley classes}
687
\label{fig:q4_1_bent_cayley_graph_index_matrix}
688
\end{minipage}
689
\end{figure}
690
\end{frame}
691
\begin{frame}
692
\frametitle{For 6 dimensions: quadratic case: $[f_{6,1}]$}
693
\begin{figure}
694
\centering
695
\begin{minipage}{.48\textwidth}
696
\centering
697
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_1_bent_cayley_graph_index_matrix.png}
698
\captionof{figure}{$[f_{6,1}]$: 2 extended Cayley classes}
699
\label{fig:q6_1_bent_cayley_graph_index_matrix}
700
\end{minipage}
701
\end{figure}
702
\end{frame}
703
\begin{frame}
704
\frametitle{For 8 dimensions: quadratic case: $[f_{8,1}]$}
705
\begin{figure}
706
\centering
707
\begin{minipage}{.48\textwidth}
708
\centering
709
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_1_bent_cayley_graph_index_matrix.png}
710
\captionof{figure}{$[f_{8,1}]$: 2 extended Cayley classes}
711
\label{fig:q8_1_bent_cayley_graph_index_matrix}
712
\end{minipage}
713
\end{figure}
714
~
715
\end{frame}
716
717
\end{colortheme}
718
719
\section{Block designs}
720
721
\begin{colortheme}{seagull}
722
723
\begin{frame}
724
\frametitle{The two block designs of a bent function}
725
726
The first block design of a bent function $f$ is obtained by interpreting
727
the adjacency matrix of $\Cay{f}$ as the incidence matrix of a block design.
728
In this case we do not need $f(0)=0$.
729
730
~
731
\begin{Def}
732
The second block design of a bent function $f$ is defined by the incidence matrix
733
$D(f)$ where
734
\begin{align*}
735
D(f)_{c,x} &:= f(x) + \langle c, x \rangle + \dual{f}(c).
736
\end{align*}
737
This is a symmetric block design with the \Emph{symmetric difference property},
738
called the \Emph{SDP design} of $f$.
739
\end{Def}
740
741
~
742
743
\slidecite{Kantor 1975; Dillon and Schatz 1987; Neumann 2006}
744
\end{frame}
745
746
\end{colortheme}
747
748
\begin{colortheme}{jubata}
749
750
\begin{frame}
751
\frametitle{The weight class matrix is \\ the SDP design matrix}
752
\begin{Theorem}
753
For every bent function $f$, the \Emph{weight class matrix} of the ET class of $f$
754
equals the incidence matrix of the SDP design of $f$.
755
756
~
757
758
Specifically,
759
\begin{align*}
760
\weightclass{x \mapsto f(x+b) + \langle c, x \rangle + f(b)}
761
&=
762
f(b) + \langle c, b \rangle + \dual{f}(c)
763
\\
764
&=
765
D(f)_{c,b}.
766
\end{align*}
767
768
\end{Theorem}
769
770
\end{frame}
771
772
\end{colortheme}
773
774
\section{Computational results for low dimensions}
775
776
\begin{colortheme}{jubata}
777
778
\begin{frame}
779
\frametitle{For 2 dimensions: classes}
780
781
One extended affine class, containing the extended translation class $[f_{2,1}]$,
782
where $f_{2,1}(x) := x_0 x_1$ is self dual.
783
784
~
785
786
Two extended Cayley classes:
787
\begin{align*}
788
\begin{array}{|cccl|}
789
\hline
790
\text{Class} &
791
\text{Parameters} &
792
\text{2-rank} &
793
\text{Clique polynomial}
794
\\
795
\hline
796
1 &
797
(4, 1, 0, 0) & 4 &
798
2t^{2} + 4t + 1
799
\\
800
2 &
801
K_4 & 4 &
802
t^{4} + 4t^{3} + 6t^{2} + 4t + 1
803
\\
804
\hline
805
\end{array}
806
\end{align*}
807
808
\end{frame}
809
\begin{frame}
810
\frametitle{For ET class $[f_{2,1}]$: matrices}
811
\begin{figure}
812
\centering
813
\begin{minipage}{.48\textwidth}
814
\centering
815
\includegraphics[width=.9\linewidth]{../matrix_plot/c2_1_weight_class_matrix.png}
816
\captionof{figure}{$[f_{2,1}]$: weight classes}
817
\label{fig:c2_1_weight_class_matrix}
818
\end{minipage}%
819
\begin{minipage}{.48\textwidth}
820
\centering
821
\includegraphics[width=.9\linewidth]{../matrix_plot/c2_1_bent_cayley_graph_index_matrix.png}
822
\captionof{figure}{$[f_{2,1}]$: extended Cayley classes}
823
\label{fig:c2_1_bent_cayley_graph_index_matrix}
824
\end{minipage}
825
\end{figure}
826
\end{frame}
827
\begin{frame}
828
\frametitle{For 4 dimensions: classes}
829
830
One extended affine class, containing the extended translation class $[f_{4,1}]$, where
831
$f_{4,1}(x) := x_0 x_1 + x_2 x_3$ is self dual.
832
833
~
834
835
Two extended Cayley classes:
836
\begin{align*}
837
\begin{array}{|cccl|}
838
\hline
839
\text{Class} &
840
\text{Parameters} &
841
\text{2-rank} &
842
\text{Clique polynomial}
843
\\
844
\hline
845
1 &
846
(16, 6, 2, 2) &
847
6 &
848
8t^{4} + 32t^{3} + 48t^{2} + 16t + 1
849
\\
850
2 &
851
(16, 10, 6, 6) &
852
6 &
853
\begin{array}{l}
854
16t^{5} + 120t^{4} + 160t^{3} +
855
\\
856
80t^{2} + 16t + 1
857
\end{array}
858
\\
859
\hline
860
\end{array}
861
\end{align*}
862
\end{frame}
863
\begin{frame}
864
\frametitle{For ET class $[f_{4,1}]$: matrices}
865
\begin{figure}
866
\centering
867
\begin{minipage}{.48\textwidth}
868
\centering
869
\includegraphics[width=.9\linewidth]{../matrix_plot/c4_1_weight_class_matrix.png}
870
\captionof{figure}{$[f_{4,1}]$: weight classes}
871
\label{fig:c4_1_weight_class_matrix}
872
\end{minipage}%
873
\begin{minipage}{.48\textwidth}
874
\centering
875
\includegraphics[width=.9\linewidth]{../matrix_plot/c4_1_bent_cayley_graph_index_matrix.png}
876
\captionof{figure}{$[f_{4,1}]$: extended Cayley classes}
877
\label{fig:c4_1_bent_cayley_graph_index_matrix}
878
\end{minipage}
879
\end{figure}
880
\end{frame}
881
882
\end{colortheme}
883
884
\begin{colortheme}{seagull}
885
886
\begin{frame}
887
\frametitle{For 6 dimensions: ET classes}
888
889
Four extended affine classes, containing the following extended translation classes:
890
891
\begin{align*}
892
\def\arraystretch{1.2}
893
\begin{array}{|cl|}
894
\hline
895
\text{Class} &
896
\text{Representative}
897
\\
898
\hline
899
\,[f_{6,1}] & f_{6,1} :=
900
\begin{array}{l}
901
x_{0} x_{1} + x_{2} x_{3} + x_{4} x_{5}
902
\end{array}
903
\\
904
\,[f_{6,2}] & f_{6,2} :=
905
\begin{array}{l}
906
x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5}
907
\end{array}
908
\\
909
\,[f_{6,3}] & f_{6,3} :=
910
\begin{array}{l}
911
x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5}
912
\\
913
+\, x_{2} x_{4} + x_{3} x_{4}
914
\end{array}
915
\\
916
\,[f_{6,4}] & f_{6,4} :=
917
\begin{array}{l}
918
x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}
919
\\
920
+\, x_{2} x_{3} + x_{2} x_{4} + x_{2} x_{5} + x_{3} x_{4} + x_{3} x_{5}
921
\end{array}
922
\\
923
\hline
924
\end{array}
925
\end{align*}
926
\slidecite{Rothaus 1976; Tokareva 2015}
927
\end{frame}
928
929
\end{colortheme}
930
931
\begin{colortheme}{jubata}
932
933
\begin{frame}
934
\frametitle{For ET class $[f_{6,1}]$: EC classes}
935
936
Bent function
937
$f_{6,1}(x) = x_0 x_1 + x_2 x_3 + x_4 x_5$ is self dual.
938
939
~
940
941
Two extended Cayley classes corresponding to Tonchev's projective two-weight codes:
942
\begin{align*}
943
\def\arraystretch{1.2}
944
\begin{array}{|ccl|}
945
\hline
946
\text{Class} &
947
\text{Parameters} & \text{Reference}
948
\\
949
\hline
950
0 & [35,6,16] & \text{Table 1.156 1, 2 (complement)}
951
\\
952
1 & [27,6,12] & \text{Table 1.155 1 }
953
\\
954
\hline
955
\end{array}
956
\end{align*}
957
958
Graph for class 0 is also isomorphic to the complement of Royle's $(64,35,18,20)$ strongly regular
959
graph $X$.
960
961
\slidecite{Tonchev 1996, 2006; Royle 2008}
962
\end{frame}
963
\begin{frame}
964
\frametitle{For ET class $[f_{6,1}]$: matrices}
965
\begin{figure}
966
\centering
967
\begin{minipage}{.48\textwidth}
968
\centering
969
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_1_weight_class_matrix.png}
970
\captionof{figure}{$[f_{6,1}]$: weight classes}
971
\label{fig:6_1_weight_class_matrix}
972
\end{minipage}%
973
\begin{minipage}{.48\textwidth}
974
\centering
975
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_1_bent_cayley_graph_index_matrix.png}
976
\captionof{figure}{$[f_{6,1}]$: 2 extended Cayley classes}
977
\label{fig:6_1_bent_cayley_graph_index_matrix}
978
\end{minipage}
979
\end{figure}
980
\end{frame}
981
\begin{frame}
982
\frametitle{For ET class $[f_{6,2}]$: EC classes}
983
984
Bent function
985
$f_{6,2}(x) = x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5}$.
986
987
~
988
989
Three extended Cayley classes corresponding to Tonchev's projective two-weight codes:
990
\begin{align*}
991
\def\arraystretch{1.2}
992
\begin{array}{|ccl|}
993
\hline
994
\text{Class} &
995
\text{Parameters} & \text{Reference}
996
\\
997
\hline
998
0 & [35,6,16] & \text{Table 1.156 1, 2 (complement)}
999
\\
1000
1 & [35,6,16] & \text{Table 1.156 3 (complement)}
1001
\\
1002
2 & [27,6,12] & \text{Table 1.155 2 }
1003
\\
1004
\hline
1005
\end{array}
1006
\end{align*}
1007
1008
Graph for class 0 is also isomorphic to that of $[f_{6,1}]$ class 0.
1009
1010
\slidecite{Tonchev 1996, 2006}
1011
\end{frame}
1012
\begin{frame}
1013
\frametitle{For ET class $[f_{6,2}]$: matrices}
1014
\begin{figure}
1015
\centering
1016
\begin{minipage}{.48\textwidth}
1017
\centering
1018
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_2_weight_class_matrix.png}
1019
\captionof{figure}{$[f_{6,2}]$: weight classes}
1020
\label{fig:6_2_weight_class_matrix}
1021
\end{minipage}%
1022
\begin{minipage}{.48\textwidth}
1023
\centering
1024
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_2_bent_cayley_graph_index_matrix.png}
1025
\captionof{figure}{$[f_{6,2}]$: 3 extended Cayley classes}
1026
\label{fig:6_2_bent_cayley_graph_index_matrix}
1027
\end{minipage}
1028
\end{figure}
1029
\end{frame}
1030
\begin{frame}
1031
\frametitle{For ET class $[f_{6,3}]$: EC classes}
1032
1033
Bent function
1034
\begin{align*}
1035
f_{6,3}(x) &= x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{3} + x_{1} x_{3} x_{4}
1036
\\
1037
&+ x_{1} x_{5} + x_{2} x_{4} + x_{3} x_{4}.
1038
\end{align*}
1039
1040
Four extended Cayley classes corresponding to Tonchev's projective two-weight codes:
1041
\begin{align*}
1042
\def\arraystretch{1.2}
1043
\begin{array}{|ccl|}
1044
\hline
1045
\text{Class} &
1046
\text{Parameters} & \text{Reference}
1047
\\
1048
\hline
1049
0 & [35,6,16] & \text{Table 1.156 4 (complement)}
1050
\\
1051
1 & [27,6,12] & \text{Table 1.155 3 }
1052
\\
1053
2 & [35,6,16] & \text{Table 1.156 5 (complement)}
1054
\\
1055
3 & [27,6,12] & \text{Table 1.155 4 }
1056
\\
1057
\hline
1058
\end{array}
1059
\end{align*}
1060
1061
\slidecite{Tonchev 1996, 2006}
1062
\end{frame}
1063
\begin{frame}
1064
\frametitle{For ET class $[f_{6,3}]$: matrices}
1065
\begin{figure}
1066
\centering
1067
\begin{minipage}{.48\textwidth}
1068
\centering
1069
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_3_weight_class_matrix.png}
1070
\captionof{figure}{$[f_{6,3}]$: weight classes}
1071
\label{fig:6_3_weight_class_matrix}
1072
\end{minipage}%
1073
\begin{minipage}{.48\textwidth}
1074
\centering
1075
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_3_bent_cayley_graph_index_matrix.png}
1076
\captionof{figure}{$[f_{6,3}]$: 4 extended Cayley classes}
1077
\label{fig:6_3_bent_cayley_graph_index_matrix}
1078
\end{minipage}
1079
\end{figure}
1080
\end{frame}
1081
\begin{frame}
1082
\frametitle{For ET class $[f_{6,4}]$: EC classes}
1083
1084
Bent function
1085
\begin{align*}
1086
f_{6,4}(x) &= x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}
1087
\\
1088
&+ x_{2} x_{3} + x_{2} x_{4} + x_{2} x_{5} + x_{3} x_{4} + x_{3} x_{5}.
1089
\end{align*}
1090
1091
Three extended Cayley classes corresponding to Tonchev's projective two-weight codes:
1092
\begin{align*}
1093
\def\arraystretch{1.2}
1094
\begin{array}{|ccl|}
1095
\hline
1096
\text{Class} &
1097
\text{Parameters} & \text{Reference}
1098
\\
1099
\hline
1100
0 & [35,6,16] & \text{Table 1.156 7 (complement)}
1101
\\
1102
1 & [35,6,16] & \text{Table 1.156 6 (complement)}
1103
\\
1104
2 & [27,6,12] & \text{Table 1.155 5 }
1105
\\
1106
\hline
1107
\end{array}
1108
\end{align*}
1109
1110
\slidecite{Tonchev 1996, 2006}
1111
\end{frame}
1112
\begin{frame}
1113
\frametitle{For ET class $[f_{6,4}]$: matrices}
1114
\begin{figure}
1115
\centering
1116
\begin{minipage}{.48\textwidth}
1117
\centering
1118
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_4_weight_class_matrix.png}
1119
\captionof{figure}{$[f_{6,4}]$: weight classes}
1120
\label{fig:6_4_weight_class_matrix}
1121
\end{minipage}%
1122
\begin{minipage}{.48\textwidth}
1123
\centering
1124
\includegraphics[width=.9\linewidth]{../matrix_plot/c6_4_bent_cayley_graph_index_matrix.png}
1125
\captionof{figure}{$[f_{6,4}]$: 3 extended Cayley classes}
1126
\label{fig:6_4_bent_cayley_graph_index_matrix}
1127
\end{minipage}
1128
\end{figure}
1129
\end{frame}
1130
1131
\end{colortheme}
1132
1133
\begin{colortheme}{seagull}
1134
1135
\begin{frame}
1136
\frametitle{For 8 dimensions: \\ number of bent functions and EA classes}
1137
1138
According to Langevin and Leander (2011)
1139
there are $99270589265934370305785861242880 \approx 2^{106}$ bent functions in dimension 8.
1140
1141
~
1142
1143
The number of EA classes has not yet been published, let alone a list of representatives.
1144
1145
\slidecite{Langevin and Leander 2011}
1146
\end{frame}
1147
1148
\begin{frame}
1149
\frametitle{For 8 dimensions, up to degree 3: \\ extended translation classes}
1150
1151
Ten extended affine classes,
1152
1153
containing the following extended translation classes:
1154
1155
\tiny{}
1156
\begin{align*}
1157
\def\arraystretch{1.2}
1158
\begin{array}{|cl|}
1159
\hline
1160
\text{Class} &
1161
\text{Representative}
1162
\\
1163
\hline
1164
\,[f_{ 8 , 1 }] & f_{ 8 , 1 } :=
1165
\begin{array}{l}
1166
x_{0} x_{1} + x_{2} x_{3} + x_{4} x_{5} + x_{6} x_{7}
1167
\end{array}
1168
\\
1169
\,[f_{ 8 , 2 }] & f_{ 8 , 2 } :=
1170
\begin{array}{l}
1171
x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5} + x_{6} x_{7}
1172
\end{array}
1173
\\
1174
\,[f_{ 8 , 3 }] & f_{ 8 , 3 } :=
1175
\begin{array}{l}
1176
x_{0} x_{1} x_{2} + x_{0} x_{6} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} + x_{4} x_{7}
1177
\end{array}
1178
\\
1179
\,[f_{ 8 , 4 }] & f_{ 8 , 4 } :=
1180
\begin{array}{l}
1181
x_{0} x_{1} x_{2} + x_{0} x_{2} + x_{0} x_{4} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} + x_{6} x_{7}
1182
\end{array}
1183
\\
1184
\,[f_{ 8 , 5 }] & f_{ 8 , 5 } :=
1185
\begin{array}{l}
1186
x_{0} x_{1} x_{2} + x_{0} x_{6} + x_{1} x_{3} x_{4} + x_{1} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{3} x_{7}
1187
\end{array}
1188
\\
1189
\,[f_{ 8 , 6 }] & f_{ 8 , 6 } :=
1190
\begin{array}{l}
1191
x_{0} x_{1} x_{2} + x_{0} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{5} x_{7}
1192
\end{array}
1193
\\
1194
\,[f_{ 8 , 7 }] & f_{ 8 , 7 } :=
1195
\begin{array}{l}
1196
x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}
1197
\\
1198
+\, x_{2} x_{4} + x_{6} x_{7}
1199
\end{array}
1200
\\
1201
\,[f_{ 8 , 8 }] & f_{ 8 , 8 } :=
1202
\begin{array}{l}
1203
x_{0} x_{1} x_{2} + x_{0} x_{5} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{3} x_{7}
1204
\end{array}
1205
\\
1206
\,[f_{ 8 , 9 }] & f_{ 8 , 9 } :=
1207
\begin{array}{l}
1208
x_{0} x_{1} x_{6} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{3} x_{6} + x_{2} x_{5} + x_{3} x_{4} + x_{4} x_{5} x_{6} + x_{6} x_{7}
1209
\end{array}
1210
\\
1211
\,[f_{ 8 , 10 }] & f_{ 8 , 10 } :=
1212
\begin{array}{l}
1213
x_{0} x_{1} x_{2} + x_{0} x_{3} x_{6} + x_{0} x_{4} + x_{0} x_{5} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4}
1214
\\
1215
+\, x_{3} x_{7}
1216
\end{array}
1217
\\
1218
\hline
1219
\end{array}
1220
\end{align*}
1221
\slidecite{Braeken 2006; Tokareva 2015}
1222
\normalsize{}
1223
\end{frame}
1224
1225
\end{colortheme}
1226
1227
\begin{colortheme}{jubata}
1228
1229
\begin{frame}
1230
\frametitle{For ET class $[f_{8,1}]$: matrices}
1231
\begin{figure}
1232
\centering
1233
\begin{minipage}{.48\textwidth}
1234
\centering
1235
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_1_weight_class_matrix.png}
1236
\captionof{figure}{$[f_{8,1}]$: weight classes}
1237
\label{fig:8_1_weight_class_matrix}
1238
\end{minipage}%
1239
\begin{minipage}{.48\textwidth}
1240
\centering
1241
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_1_bent_cayley_graph_index_matrix.png}
1242
\captionof{figure}{$[f_{8,1}]$: 2 extended Cayley classes}
1243
\label{fig:8_1_bent_cayley_graph_index_matrix}
1244
\end{minipage}
1245
\end{figure}
1246
~
1247
\end{frame}
1248
\begin{frame}
1249
\frametitle{For ET class $[f_{8,2}]$: matrices}
1250
\begin{figure}
1251
\centering
1252
\begin{minipage}{.48\textwidth}
1253
\centering
1254
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_2_weight_class_matrix.png}
1255
\captionof{figure}{$[f_{8,2}]$: weight classes}
1256
\label{fig:8_2_weight_class_matrix}
1257
\end{minipage}%
1258
\begin{minipage}{.48\textwidth}
1259
\centering
1260
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_2_bent_cayley_graph_index_matrix.png}
1261
\captionof{figure}{$[f_{8,2}]$: 4 extended Cayley classes}
1262
\label{fig:8_2_bent_cayley_graph_index_matrix}
1263
\end{minipage}
1264
\end{figure}
1265
Graph for class 0 is isomorphic to graph for class 0 of $[f_{8,1}]$.
1266
\end{frame}
1267
\begin{frame}
1268
\frametitle{For ET class $[f_{8,3}]$: matrices}
1269
\begin{figure}
1270
\centering
1271
\begin{minipage}{.48\textwidth}
1272
\centering
1273
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_3_weight_class_matrix.png}
1274
\captionof{figure}{$[f_{8,3}]$: weight classes}
1275
\label{fig:8_3_weight_class_matrix}
1276
\end{minipage}%
1277
\begin{minipage}{.48\textwidth}
1278
\centering
1279
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_3_bent_cayley_graph_index_matrix.png}
1280
\captionof{figure}{$[f_{8,3}]$: 6 extended Cayley classes}
1281
\label{fig:8_3_bent_cayley_graph_index_matrix}
1282
\end{minipage}
1283
\end{figure}
1284
~
1285
\end{frame}
1286
\begin{frame}
1287
\frametitle{For ET class $[f_{8,4}]$: matrices}
1288
\begin{figure}
1289
\centering
1290
\begin{minipage}{.48\textwidth}
1291
\centering
1292
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_4_weight_class_matrix.png}
1293
\captionof{figure}{$[f_{8,4}]$: weight classes}
1294
\label{fig:8_4_weight_class_matrix}
1295
\end{minipage}%
1296
\begin{minipage}{.48\textwidth}
1297
\centering
1298
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_4_bent_cayley_graph_index_matrix.png}
1299
\captionof{figure}{$[f_{8,4}]$: 5 extended Cayley classes}
1300
\label{fig:8_4_bent_cayley_graph_index_matrix}
1301
\end{minipage}
1302
\end{figure}
1303
~
1304
\end{frame}
1305
\begin{frame}
1306
\frametitle{For ET class $[f_{8,5}]$: matrices}
1307
\begin{figure}
1308
\centering
1309
\begin{minipage}{.48\textwidth}
1310
\centering
1311
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_5_weight_class_matrix.png}
1312
\captionof{figure}{$[f_{8,5}]$: weight classes}
1313
\label{fig:8_5_weight_class_matrix}
1314
\end{minipage}%
1315
\begin{minipage}{.48\textwidth}
1316
\centering
1317
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_5_bent_cayley_graph_index_matrix.png}
1318
\captionof{figure}{$[f_{8,5}]$: 9 extended Cayley classes}
1319
\label{fig:8_5_bent_cayley_graph_index_matrix}
1320
\end{minipage}
1321
\end{figure}
1322
~
1323
\end{frame}
1324
\begin{frame}
1325
\frametitle{For ET class $[f_{8,6}]$: matrices}
1326
\begin{figure}
1327
\centering
1328
\begin{minipage}{.48\textwidth}
1329
\centering
1330
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_6_weight_class_matrix.png}
1331
\captionof{figure}{$[f_{8,6}]$: weight classes}
1332
\label{fig:8_6_weight_class_matrix}
1333
\end{minipage}%
1334
\begin{minipage}{.48\textwidth}
1335
\centering
1336
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_6_bent_cayley_graph_index_matrix.png}
1337
\captionof{figure}{$[f_{8,6}]$: 9 extended Cayley classes}
1338
\label{fig:8_6_bent_cayley_graph_index_matrix}
1339
\end{minipage}
1340
\end{figure}
1341
The same 9 classes as $[f_{8,5}]$, with the same frequencies!
1342
\end{frame}
1343
\begin{frame}
1344
\frametitle{For ET class $[f_{8,7}]$: matrices}
1345
\begin{figure}
1346
\centering
1347
\begin{minipage}{.48\textwidth}
1348
\centering
1349
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_7_weight_class_matrix.png}
1350
\captionof{figure}{$[f_{8,7}]$: weight classes}
1351
\label{fig:8_7_weight_class_matrix}
1352
\end{minipage}%
1353
\begin{minipage}{.48\textwidth}
1354
\centering
1355
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_7_bent_cayley_graph_index_matrix.png}
1356
\captionof{figure}{$[f_{8,7}]$: 5 extended Cayley classes}
1357
\label{fig:8_7_bent_cayley_graph_index_matrix}
1358
\end{minipage}
1359
\end{figure}
1360
~
1361
\end{frame}
1362
\begin{frame}
1363
\frametitle{For ET class $[f_{8,8}]$: matrices}
1364
\begin{figure}
1365
\centering
1366
\begin{minipage}{.48\textwidth}
1367
\centering
1368
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_8_weight_class_matrix.png}
1369
\captionof{figure}{$[f_{8,8}]$: weight classes}
1370
\label{fig:8_8_weight_class_matrix}
1371
\end{minipage}%
1372
\begin{minipage}{.48\textwidth}
1373
\centering
1374
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_8_bent_cayley_graph_index_matrix.png}
1375
\captionof{figure}{$[f_{8,8}]$: 6 extended Cayley classes}
1376
\label{fig:8_8_bent_cayley_graph_index_matrix}
1377
\end{minipage}
1378
\end{figure}
1379
~
1380
\end{frame}
1381
\begin{frame}
1382
\frametitle{For ET class $[f_{8,9}]$: matrices}
1383
\begin{figure}
1384
\centering
1385
\begin{minipage}{.48\textwidth}
1386
\centering
1387
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_9_bent_cayley_graph_index_matrix.png}
1388
\captionof{figure}{$[f_{8,9}]$: 8 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}
1389
\label{fig:c8_9_bent_cayley_graph_index_matrix}
1390
\end{minipage}
1391
\begin{minipage}{.48\textwidth}
1392
\centering
1393
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_9_dual_cayley_graph_index_matrix.png}
1394
\captionof{figure}{$[f_{8,9}]$: 8 extended Cayley classes of dual bent functions}
1395
\label{fig:c8_9_dual_cayley_graph_index_matrix}
1396
\end{minipage}%
1397
\end{figure}
1398
4 of the 8 classes form 2 dual pairs of classes.
1399
\end{frame}
1400
\begin{frame}
1401
\frametitle{For ET class $[f_{8,10}]$: matrices}
1402
\begin{figure}
1403
\centering
1404
\begin{minipage}{.48\textwidth}
1405
\centering
1406
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_10_bent_cayley_graph_index_matrix.png}
1407
\captionof{figure}{$[f_{8,10}]$: 10 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}
1408
\label{fig:c8_10_bent_cayley_graph_index_matrix}
1409
\end{minipage}
1410
\begin{minipage}{.48\textwidth}
1411
\centering
1412
\includegraphics[width=.9\linewidth]{../matrix_plot/c8_10_dual_cayley_graph_index_matrix.png}
1413
\captionof{figure}{$[f_{8,10}]$: 10 extended Cayley classes of dual bent functions}
1414
\label{fig:c8_10_dual_cayley_graph_index_matrix}
1415
\end{minipage}%
1416
\end{figure}
1417
6 of the 10 classes form 3 dual pairs of classes.
1418
\end{frame}
1419
1420
\end{colortheme}
1421
1422
\begin{colortheme}{seagull}
1423
1424
\begin{frame}[fragile]
1425
\frametitle{For 8 dimensions: number of partial spread \\ bent functions and EA classes}
1426
1427
According to Langevin and Hou (2011)
1428
there are $70576747237594114392064 \approx 2^{75.9}$ \Emph{partial spread} bent functions in dimension 8,
1429
contained in $14758$ EA classes, of which $14756$ have degree 4.
1430
1431
~
1432
1433
The EA class representatives are listed at Langevin's web site
1434
1435
\begin{verbatim}
1436
http://langevin.univ-tln.fr/project/spread/psp.html
1437
\end{verbatim}
1438
1439
\slidecite{Langevin and Hou 2011}
1440
\end{frame}
1441
1442
\end{colortheme}
1443
1444
\begin{colortheme}{jubata}
1445
1446
\begin{frame}
1447
\frametitle{Example partial spread ET class $[psf_{9,5439}]$}
1448
\begin{figure}
1449
\centering
1450
\begin{minipage}{.48\textwidth}
1451
\centering
1452
\includegraphics[width=.9\linewidth]{../matrix_plot/psf_9_5439_bent_cayley_graph_index_matrix.png}
1453
\captionof{figure}{$[psf_{9,5439}]$: 16 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}
1454
\label{fig:psf_9_5439_bent_cayley_graph_index_matrix}
1455
\end{minipage}
1456
\begin{minipage}{.48\textwidth}
1457
\centering
1458
\includegraphics[width=.9\linewidth]{../matrix_plot/psf_9_5439_dual_cayley_graph_index_matrix.png}
1459
\captionof{figure}{$[psf_{9,5439}]$: 16 extended Cayley classes of dual bent functions}
1460
\label{fig:psf_9_5439_dual_cayley_graph_index_matrix}
1461
\end{minipage}%
1462
\end{figure}
1463
6 of the 16 classes form 3 dual pairs of classes.
1464
\end{frame}
1465
1466
\end{colortheme}
1467
1468
\begin{colortheme}{seagull}
1469
1470
\begin{frame}[fragile]
1471
\frametitle{For 8 dimensions: Bent functions from CAST-128 S-boxes}
1472
1473
The CAST-128 encryption algorithm is used in PGP and elsewhere.
1474
1475
CAST-128, including the S-boxes, is specified by IETF RFC 2144:
1476
\begin{verbatim}
1477
https://www.ietf.org/rfc/rfc2144.txt
1478
\end{verbatim}
1479
1480
The algorithm uses 8 S-boxes, each of which consists of 32 binary bent functions in 8 dimensions,
1481
with degree 4.
1482
1483
~
1484
1485
\slidecite{Adams 1997}
1486
\end{frame}
1487
1488
\end{colortheme}
1489
1490
\begin{colortheme}{jubata}
1491
1492
\begin{frame}
1493
\frametitle{CAST-128 ET class $[cast128_{1,0}]$}
1494
\begin{figure}
1495
\centering
1496
\begin{minipage}{.48\textwidth}
1497
\centering
1498
1499
\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_1_0_weight_class_matrix.png}
1500
\captionof{figure}{$[cast128_{1,0}]$: weight classes ~~~~~~ ~~~~~~~~}
1501
\label{fig:cast128_1_0_weight_class_matrix}
1502
\end{minipage}
1503
\begin{minipage}{.48\textwidth}
1504
\centering
1505
\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_1_0_bent_cayley_graph_index_matrix.png}
1506
\captionof{figure}{$[cast128_{1,0}]$: $65\,536$ extended Cayley classes}
1507
\label{fig:cast128_1_0_bent_cayley_graph_index_matrix}
1508
\end{minipage}%
1509
\end{figure}
1510
Dual bent functions yield another $65\,536$ extended Cayley classes.
1511
\end{frame}
1512
\begin{frame}
1513
\frametitle{CAST-128 ET class $[cast128_{2,1}]$}
1514
\begin{figure}
1515
\centering
1516
\begin{minipage}{.48\textwidth}
1517
\centering
1518
1519
\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_2_1_weight_class_matrix.png}
1520
\captionof{figure}{$[cast128_{2,1}]$: weight classes ~~~~~~ ~~~~~~~~}
1521
\label{fig:cast128_2_1_weight_class_matrix}
1522
\end{minipage}
1523
\begin{minipage}{.48\textwidth}
1524
\centering
1525
\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_2_1_bent_cayley_graph_index_matrix.png}
1526
\captionof{figure}{$[cast128_{2,1}]$: $8\,256$ extended Cayley classes}
1527
\label{fig:cast128_2_1_bent_cayley_graph_index_matrix}
1528
\end{minipage}%
1529
\end{figure}
1530
Dual bent functions yield the same $8\,256$ extended Cayley classes.
1531
\end{frame}
1532
1533
\begin{frame}
1534
\frametitle{CAST-128 ET class $[cast128_{2,16}]$}
1535
\begin{figure}
1536
\centering
1537
\begin{minipage}{.48\textwidth}
1538
\centering
1539
1540
\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_2_16_weight_class_matrix.png}
1541
\captionof{figure}{$[cast128_{2,16}]$: weight classes ~~~~~~ ~~~~~~~~}
1542
\label{fig:cast128_2_16_weight_class_matrix}
1543
\end{minipage}
1544
\begin{minipage}{.48\textwidth}
1545
\centering
1546
\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_2_16_bent_cayley_graph_index_matrix.png}
1547
\captionof{figure}{$[cast128_{2,16}]$: $32\,768$ extended Cayley classes}
1548
\label{fig:cast128_2_16_bent_cayley_graph_index_matrix}
1549
\end{minipage}%
1550
\end{figure}
1551
Dual bent functions yield another $32\,768$ extended Cayley classes.
1552
\end{frame}
1553
1554
\begin{frame}
1555
\frametitle{CAST-128 ET class $[cast128_{4,27}]$}
1556
\begin{figure}
1557
\centering
1558
\begin{minipage}{.48\textwidth}
1559
\centering
1560
1561
\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_4_27_weight_class_matrix.png}
1562
\captionof{figure}{$[cast128_{4,27}]$: weight classes ~~~~~~ ~~~~~~~~}
1563
\label{fig:cast128_4_27_weight_class_matrix}
1564
\end{minipage}
1565
\begin{minipage}{.48\textwidth}
1566
\centering
1567
\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_4_27_bent_cayley_graph_index_matrix.png}
1568
\captionof{figure}{$[cast128_{4,27}]$: $65\,536$ extended Cayley classes}
1569
\label{fig:cast128_4_27_bent_cayley_graph_index_matrix}
1570
\end{minipage}%
1571
\end{figure}
1572
Dual bent functions yield the same $65\,536$ extended Cayley classes.
1573
\end{frame}
1574
\end{colortheme}
1575
1576
\section{Computational results for $\sigma_m$ and $\tau_m$}
1577
1578
\begin{colortheme}{jubata}
1579
1580
\begin{frame}
1581
\frametitle{For 2 dimensions: $[\sigma_1]$ and $[\tau_1]$}
1582
\begin{figure}
1583
\centering
1584
\begin{minipage}{.48\textwidth}
1585
\centering
1586
\includegraphics[width=.9\linewidth]{../matrix_plot/sigma_1_bent_cayley_graph_index_matrix.png}
1587
\captionof{figure}{$[\sigma_1]$: 2 extended Cayley classes}
1588
\label{fig:sigma_1_bent_cayley_graph_index_matrix}
1589
\end{minipage}%
1590
\begin{minipage}{.48\textwidth}
1591
\centering
1592
\includegraphics[width=.9\linewidth]{../matrix_plot/tau_1_bent_cayley_graph_index_matrix.png}
1593
\captionof{figure}{$[\tau_1]$: 2 extended Cayley classes}
1594
\label{fig:tau_1_bent_cayley_graph_index_matrix}
1595
\end{minipage}
1596
\end{figure}
1597
\end{frame}
1598
1599
\begin{frame}
1600
\frametitle{For 4 dimensions: $[\sigma_2]$ and $[\tau_2]$}
1601
\begin{figure}
1602
\centering
1603
\begin{minipage}{.48\textwidth}
1604
\centering
1605
\includegraphics[width=.9\linewidth]{../matrix_plot/sigma_2_bent_cayley_graph_index_matrix.png}
1606
\captionof{figure}{$[\sigma_2]$: 2 extended Cayley classes}
1607
\label{fig:sigma_2_bent_cayley_graph_index_matrix}
1608
\end{minipage}%
1609
\begin{minipage}{.48\textwidth}
1610
\centering
1611
\includegraphics[width=.9\linewidth]{../matrix_plot/tau_2_bent_cayley_graph_index_matrix.png}
1612
\captionof{figure}{$[\tau_2]$: 2 extended Cayley classes}
1613
\label{fig:tau_2_bent_cayley_graph_index_matrix}
1614
\end{minipage}
1615
\end{figure}
1616
\end{frame}
1617
1618
\begin{frame}
1619
\frametitle{For 6 dimensions: $[\sigma_3]$ and $[\tau_3]$}
1620
\begin{figure}
1621
\centering
1622
\begin{minipage}{.48\textwidth}
1623
\centering
1624
\includegraphics[width=.9\linewidth]{../matrix_plot/sigma_3_bent_cayley_graph_index_matrix.png}
1625
\captionof{figure}{$[\sigma_3]$: 2 extended Cayley classes}
1626
\label{fig:sigma_3_bent_cayley_graph_index_matrix}
1627
\end{minipage}%
1628
\begin{minipage}{.48\textwidth}
1629
\centering
1630
\includegraphics[width=.9\linewidth]{../matrix_plot/tau_3_bent_cayley_graph_index_matrix.png}
1631
\captionof{figure}{$[\tau_3]$: 3 extended Cayley classes}
1632
\label{fig:tau_3_bent_cayley_graph_index_matrix}
1633
\end{minipage}
1634
\end{figure}
1635
\end{frame}
1636
1637
\begin{frame}
1638
\frametitle{For 8 dimensions: $[\sigma_4]$ and $[\tau_4]$}
1639
\begin{figure}
1640
\centering
1641
\begin{minipage}{.48\textwidth}
1642
\centering
1643
\includegraphics[width=.9\linewidth]{../matrix_plot/sigma_4_bent_cayley_graph_index_matrix.png}
1644
\captionof{figure}{$[\sigma_4]$: 2 extended Cayley classes}
1645
\label{fig:sigma_4_bent_cayley_graph_index_matrix}
1646
\end{minipage}%
1647
\begin{minipage}{.48\textwidth}
1648
\centering
1649
\includegraphics[width=.9\linewidth]{../matrix_plot/tau_4_bent_cayley_graph_index_matrix.png}
1650
\captionof{figure}{$[\tau_4]$: 5 extended Cayley classes}
1651
\label{fig:tau_4_bent_cayley_graph_index_matrix}
1652
\end{minipage}
1653
\end{figure}
1654
\end{frame}
1655
\end{colortheme}
1656
1657
\section{Questions}
1658
1659
\begin{colortheme}{jubata}
1660
1661
\begin{frame}
1662
\frametitle{Open problems (1)}
1663
Settled only for dimensions up to 6:
1664
\begin{enumerate}
1665
\item
1666
How many EC classes are there for each dimension?
1667
Are there ``Exponential numbers'' of classes?
1668
\item
1669
In $n$ dimensions,
1670
which ET classes contain the maximum number, $4^n$, of different EC classes?
1671
\item
1672
Which EC classes overlap more than one ET class?
1673
\item
1674
Which bent functions are Cayley equivalent to their dual?
1675
\item
1676
Which bent functions are EA equivalent to their dual?
1677
\end{enumerate}
1678
1679
\slidecite{Kantor 1983; Jungnickel and Tonchev 1991; Langevin, Leander and McGuire 2008}
1680
\end{frame}
1681
1682
\begin{frame}
1683
\frametitle{Open problems (2)}
1684
Also:
1685
1686
~
1687
1688
\begin{enumerate}
1689
\item
1690
What are the remaining EA and EC classes of binary bent functions of dimension 8 and degree 4?
1691
1692
~
1693
1694
\item
1695
How do extended Cayley classes of bent functions generalize to bent functions over $\F_p$, $p \neq 2$?
1696
\end{enumerate}
1697
1698
\slidecite{Langevin and Leander 2011; Chee, Tan and Zhang 2011}
1699
\end{frame}
1700
1701
\end{colortheme}
1702
1703
\section{Source code}
1704
1705
\begin{colortheme}{jubata}
1706
1707
\begin{frame}[fragile]
1708
\frametitle{Source code and documentation}
1709
~
1710
1711
CoCalc: Public worksheets, Sage and Python source code
1712
1713
\begin{verbatim}
1714
http://tinyurl.com/Boolean-Cayley-graphs
1715
\end{verbatim}
1716
1717
~
1718
1719
GitHub: Sage and Python source code
1720
1721
\begin{verbatim}
1722
https://github.com/penguian/Boolean-Cayley-graphs
1723
\end{verbatim}
1724
1725
~
1726
1727
SourceForge: Documentation
1728
1729
\begin{verbatim}
1730
https://boolean-cayley-graphs.sourceforge.io/
1731
\end{verbatim}
1732
\end{frame}
1733
1734
\end{colortheme}
1735
1736
\section{Last}
1737
1738
\begin{colortheme}{jubata}
1739
1740
\begin{frame}
1741
\frametitle{Thank you.}
1742
1743
\begin{figure}
1744
\centering
1745
\begin{minipage}{.48\textwidth}
1746
\centering
1747
\includegraphics[width=.9\linewidth]{../matrix_plot/tau_3_bent_cayley_graph_index_matrix.png}
1748
\captionof{figure}{$[\tau_3]$: 3 extended Cayley classes}
1749
\label{fig:again_tau_3_bent_cayley_graph_index_matrix}
1750
\end{minipage}
1751
\begin{minipage}{.48\textwidth}
1752
\centering
1753
\includegraphics[width=.9\linewidth]{../matrix_plot/tau_4_bent_cayley_graph_index_matrix.png}
1754
\captionof{figure}{$[\tau_4]$: 5 extended Cayley classes}
1755
\label{fig:again_tau_4_bent_cayley_graph_index_matrix}
1756
\end{minipage}%
1757
\end{figure}
1758
\end{frame}
1759
1760
\end{colortheme}
1761
1762
\end{document}
1763
1764