Boolean-Cayley-graphs / papers-talks / U-Melbourne-2017-Melbourne / Leopardi-Bent-functions-U-Melbourne-2017-talk.tex
22144 views\documentclass[pdf,sprung,slideColor,nocolorBG]{beamer}1%2%\documentclass[hyperref={pdfpagelabels=false}]{beamer}3\mode<presentation>45\newenvironment{colortheme}[1]{6\def\ProvidesPackageRCS $##1${\relax}7\renewcommand{\ProcessOptions}{\relax}8\makeatletter9\input beamercolortheme#1.sty10\makeatother11}{}1213\let\Tiny=\tiny14\usetheme{Adelaide}15\usefonttheme[stillsansseriftext]{serif}16\setbeamerfont{structure}{series=\bfseries}17\setbeamertemplate{frametitle}[default][center]18\usepackage[figurename={}]{caption}19\usepackage[latin1]{inputenc}20%\usepackage{amsmath} %needed for \begin{align}... \end{align} environment21\usepackage{amsfonts}22\usepackage{amssymb}23%\usepackage{amscd}24%\usepackage[all]{xy}25\usepackage{xcolor}26\usepackage{enumerate}27%28\newcommand{\slidecite}[1]{\tiny{(#1)}\normalsize{}}29\newcommand{\smallcite}[1]{\small{(#1)}\normalsize{}}3031\newcommand{\mb}[1]{\mathbb{#1}}32\newcommand{\mf}[1]{\mathbf{#1}}33\newcommand{\Emph}[1]{\emph{\textcolor{blue}{#1}}}34\newcommand{\Red}[1]{\mathbf{\textcolor{red}{#1}}}3536\newcommand{\abs}[1]{\left| #1 \right|}37\newcommand{\norm}[1]{\left\| #1 \right\|}38\newcommand{\To}{\rightarrow}3940\newcommand{\Cay}[1]{\operatorname{Cay}\left(#1\right)}41\newcommand{\Clique}[1]{\omega\left(#1\right)}42\newcommand{\dual}[1]{\widetilde{#1}}43\newcommand{\support}[1]{\operatorname{supp}\left(#1\right)}44\newcommand{\weight}[1]{\operatorname{wt}\left(#1\right)}45\newcommand{\weightclass}[1]{\operatorname{wc}\left(#1\right)}4647\newcommand{\F}{\mb{F}}48\newcommand{\G}{\mb{G}}49\newcommand{\R}{\mb{R}}50\newcommand{\Z}{\mb{Z}}51\newtheorem{Def}{Definition}52\newtheorem{Conjecture}{Conjecture}53\newtheorem{Question}{Question}54\newtheorem{Proposition}{Proposition}5556\title{Classifying bent functions}57\author{Paul Leopardi}5859\date{For University of Melbourne60\\61October 2017}6263\institute{University of Melbourne64\\65Australian Government - Bureau of Meteorology}66\titlegraphic{67%\includegraphics[angle=0,width=10mm]{../../common/beamer-anu-colourlogo.png}68%\includegraphics[angle=0,width=20mm]{../../common/carma_logo.jpg}69}70\begin{document}7172\frame{\titlepage}73\begin{frame}74\frametitle{Acknowledgements}75\begin{center}76Nathan Clisby,77Robert Craigen,78Joanne Hall,79David Joyner, Philippe Langevin, William Martin,80Padraig {\'O} Cath{\'a}in,81Judy-anne Osborn, Dima Pasechnik and William Stein.8283~8485kodlu on MathOverflow.8687~8889Matthew Leingang for Beamer colour themes.9091~9293Australian National University. University of Newcastle, Australia. University of Melbourne.9495~9697Australian Government - Bureau of Meteorology.9899~100101SageMath, Bliss, Nauty.102\end{center}103\end{frame}104105\begin{frame}106\frametitle{Overview}107%\begin{center}108\begin{itemize}109\item110Preliminaries.111112~113114\item115Cayley graphs and linear codes.116117~118119\item120Equivalence of bent functions.121122~123124\item125Block designs.126127~128129\item130Computational results for low dimensions.131132~133134\item135Questions.136137~138139\item140Source code and documentation.141\end{itemize}142143%\end{center}144\end{frame}145146\section{Preliminaries}147148\begin{colortheme}{jubata}149150\begin{frame}151\frametitle{Motivation}152153In a construction for Hada\-mard matrices, I encountered154two sequences of \Emph{bent} Boolean functions,155\begin{align*}156\sigma_m &: \F_2^{2m} \To \F_2, \quad \tau_m : \F_2^{2m} \To \F_2,157\end{align*}158whose Cayley graphs are \Emph{strongly regular} with parameters159\begin{align*}160(v,k,\lambda,\mu) &= (4^m, 2^{2 m - 1} - 2^{m-1}, 2^{2 m - 2} - 2^{m-1}, 2^{2 m - 2} - 2^{m-1}),161\end{align*}162but the graphs for $\sigma_m$ and $\tau_m$ are isomorphic only when163164$m=1,2$ or $3.$165166~167168Question: \Emph{Which strongly regular graphs arise as Cayley graphs of bent Boolean functions?}169\end{frame}170\end{colortheme}171172\begin{colortheme}{seagull}173174\begin{frame}175\frametitle{Bent functions}176% Bent functions can be defined in a number of equivalent ways.177% The definition used here involves the Walsh Hadamard Transform.178\begin{Def}179\label{def-Walsh-Hadamard-transform}180The Walsh Hadamard transform of181a Boolean function $f : \F_2^{2m} \To \F_2$ is182\begin{align*}183W_f(x)184&:=185\sum_{y \in \F_2^{2m}} (-1)^{f(y) + \langle x, y \rangle}186\end{align*}187\end{Def}188189\begin{Def}190\label{def-Bent-function}191A Boolean function $f : \F_2^{2m} \To \F_2$ is \Emph{bent}192if and only if its Walsh Hada\-mard transform has constant absolute value $2^{m}$.193% \cite[p. 74]{Dil74}194% \cite[p. 300]{Rot76}.195\end{Def}196\slidecite{Dillon 1974; Rothaus 1976}197\end{frame}198\begin{frame}199\frametitle{Dual bent functions}200201\begin{Def}202\label{def-dual-Bent-function}203For a bent function $f : \F_2^{2m} \To \F_2$, the function $\dual{f}$, defined by204\begin{align*}205(-1)^{\dual{f}(x)} &:= 2^{-m} W_f(x)206\end{align*}207is called the \Emph{dual} of $f$.208\end{Def}209210~211212The function $\dual{f}$ is also a bent function on $\F_2^{2m}$.213214~215216\slidecite{Dillon 1974; Rothaus 1976}217\end{frame}218219\begin{frame}220\frametitle{Example}221222The function $f : \F_2^2 \To \F_2$ defined by $f(x) := x_0 x_1$223is bent, since224\begin{align*}225W_f(x)226=&227\sum_{y \in \F_2^2} (-1)^{f(y) + \langle x, y \rangle}228\\229=&\ (-1)^{f(0,0) + \langle x, (0,0) \rangle}230+ (-1)^{f(1,0) + \langle x, (1,0) \rangle} +231\\232\phantom{=}&\ (-1)^{f(0,1) + \langle x, (0,1) \rangle}233+ (-1)^{f(1,1) + \langle x, (1,1) \rangle}234\\235=&\ (-1)^{0 + 0} + (-1)^{0 + x_0} + (-1)^{0 + x_1} + (-1)^{1 + x_0 + x_1}236\\237=&\ 1 + (-1)^{x_0} + (-1)^{x_1} - (-1)^{x_0 + x_1}238\\239=&\ 2 \times (-1)^{f(x)},240\end{align*}241so $\dual{f} = f$, and $f$ is \Emph{self-dual}.242%243\end{frame}244245\begin{frame}246\frametitle{Bent functions and affine functions}247Bent functions are at maximum Hamming distance from affine functions.248For $f : \F_2^2 \To \F_2,$ this distance is 1 \slidecite{Meier and Staffelbach 1989}.249\scriptsize{}250\begin{align*}251\begin{array}{|cccc|}252\hline253(0,0)& (1,0)& (0,1)& (1,1)254\\255\hline2560 & 0 & 0 & 0257\\258\Red{0}& \Red{0} & \Red{0} & \Red{1}259\\260\Red{0}& \Red{0} & \Red{1} & \Red{0}261\\2620 & 0 & 1 & 1263\\264\Red{0}& \Red{1} & \Red{0} & \Red{0}265\\2660 & 1 & 0 & 1267\\2680 & 1 & 1 & 0269\\270\Red{0}& \Red{1} & \Red{1} & \Red{1}271\\272\Red{1}& \Red{0} & \Red{0} & \Red{0}273\\2741 & 0 & 0 & 1275\\2761 & 0 & 1 & 0277\\278\Red{1}& \Red{0} & \Red{1} & \Red{1}279\\2801 & 1 & 0 & 0281\\282\Red{1}& \Red{1} & \Red{0} & \Red{1}283\\284\Red{1}& \Red{1} & \Red{1} & \Red{0}285\\2861 & 1 & 1 & 1287\\288\hline289\end{array}290\end{align*}291\normalsize{}292\end{frame}293294\end{colortheme}295296\begin{colortheme}{jubata}297298\begin{frame}299\frametitle{Weights and weight classes}300\begin{Def}301The \Emph{weight} of a binary function is the cardinality of its \Emph{support}.302For $f$ on $\F_2^{2m}$303\begin{align*}304\support{f} &:= \{x \in \F_2^{2m} \mid f(x)=1 \}.305\end{align*}306307A bent function $f$ on $\F_2^{2m}$ has weight308\begin{align*}309\weight{f} &= 2^{2 m - 1} - 2^{m-1} \quad (\text{weight class~} \weightclass{f}=0), \text{~or}310\\311\weight{f} &= 2^{2 m - 1} + 2^{m-1} \quad (\text{weight class~} \weightclass{f}=1).312\end{align*}313% If $f(0)=0$ then $\weightclass{\Cay{f}} := \weightclass{f}$.314\end{Def}315\end{frame}316317\end{colortheme}318319\section{Cayley graphs and linear codes}320321\begin{colortheme}{seagull}322323\begin{frame}324\frametitle{The Cayley graph of a Boolean function}325%\begin{center}326The \Emph{Cayley graph} $\Cay{f}$ of a Boolean function327328~329330\begin{align*}331%332f : \F_2^n \To \F_2 \quad \text{where} \quad f(0) = 0333%334\end{align*}335336~337338is339an undirected graph with340341\begin{align*}342V(\Cay{f}) &:= \F_2^n, \quad (x,y) \in E(\Cay{f}) \Leftrightarrow f(x+y) = 1.343\end{align*}344345~346347\slidecite{Bernasconi and Codenotti 1999}348\end{frame}349350\begin{frame}351\frametitle{Strongly regular graphs}352%\begin{center}353A simple graph $\Gamma$ of order $v$ is \Emph{strongly regular} with parameters354$(v,k,\lambda,\mu)$ if355356~357358\begin{itemize}359\item360each vertex has degree $k,$361362~363\item364each adjacent pair of vertices has $\lambda$ common neighbours, and365366~367\item368each nonadjacent pair of vertices has $\mu$ common neighbours.369\end{itemize}370371~372373\slidecite{Brouwer, Cohen and Neumaier 1989}374375%\end{center}376\end{frame}377378\begin{frame}379\frametitle{Bent functions and strongly regular graphs}380381\begin{Proposition}382\smallcite{Bernasconi and Codenotti 1999}383384The Cayley graph $\Cay{f}$ of a bent function $f$ on $\F_2^{2m}$385386with $f(0)=0$ is a strongly regular graph with $\lambda = \mu.$387\end{Proposition}388389The parameters of $\Cay{f}$ are390\begin{align*}391(v,k,\lambda) = &(4^m, 2^{2 m - 1} - 2^{m-1}, 2^{2 m - 2} - 2^{m-1})392\\393\text{or} \quad &(4^m, 2^{2 m - 1} + 2^{m-1}, 2^{2 m - 2} + 2^{m-1}).394\end{align*}395396~397398\slidecite{Menon 1962; Dillon 1974; Bernasconi and Codenotti 1999}399%\end{center}400\end{frame}401402\begin{frame}403\frametitle{Projective two-weight binary codes}404405\begin{Def}406A \Emph{two-weight binary code} with parameters $[n,k,d]$ is a $k$ dimensional subspace of $\F_2^n$407with408minimum Hamming distance $d$, such that the set of Hamming weights of the non-zero vectors has size4092.410411~412413``A \Emph{generator matrix} $G$ of a linear code $[n, k]$ code $C$ is any matrix414of rank $k$ (over $\F_2$) with rows from $C.$''415416~417418``A linear $[n, k]$ code is called \Emph{projective} if no two columns of a generator matrix419$G$ are linearly dependent, i.e., if the columns of $G$ are pairwise different points in a420projective $(k-1)$-dimensional space.''421In the case of $\F_2$, no two columns are equal.422423~424425\end{Def}426427\slidecite{Tonchev 1996; Bouyukliev, Fack, Willems and Winne 2006}428429\end{frame}430431\begin{frame}432\frametitle{From bent function to linear code (1)}433\begin{Def}434435\smallcite{Carlet 2007; Ding and Ding 2015, Corollary 10}436437For a bent function $f : \F_2^{2m} \To \F_2$,438define the linear code $C(f)$ by the generator matrix439\begin{align*}440M C(f) &\in \F_2^{4^m \times \weight{f}},441\\442M C(f)_{x,y} &:= \langle x, \support{f}(y) \rangle,443\end{align*}444with $x$ in lexicographic order of $\F_2^{2m}$445and $\support{f}(y)$ in lexicographic order of $\support{f}$.446447The $4^m$ words of the code $C(f)$ are the rows of the generator matrix $M C(f)$.448\end{Def}449450\slidecite{Carlet 2007; Ding and Ding 2015, Corollary 10}451452\end{frame}453\begin{frame}454\frametitle{From bent function to linear code (2)}455\begin{Proposition}456\smallcite{Carlet 2007, Prop. 20; Ding and Ding 2015, Corollary 10}457458For a bent function $f : \F_2^{2m} \To \F_2$, the linear code $C(f)$459is a projective two-weight code.460461~462463The possible weights of non-zero code words are:464\begin{align*}465\begin{cases}4662^{2m-2}, 2^{2m-2} - 2^{m-1} & \text{if~} \weightclass{f}=0.467\\4682^{2m-2}, 2^{2m-2} + 2^{m-1} & \text{if~} \weightclass{f}=1.469\end{cases}470\end{align*}471472\end{Proposition}473474\slidecite{Carlet 2007, Prop. 20; Ding and Ding 2015, Corollary 10}475476\end{frame}477478\begin{frame}479\frametitle{From linear code to strongly regular graph}480\begin{Def}481\label{R-f-def}482Given $f : \F_2^{2m} \To \F_2$, form the linear code $C(f)$.483484The graph $R(f)$ is defined as:485486Vertices of $R(f)$ are code words of $C(f)$.487488For $v,w \in C(f)$, edge $(u,v) \in R(f)$ if and only if489\begin{align*}490\begin{cases}491\weight{u+v} = 2^{2m-2} - 2^{m-1} & (\text{if~}\weightclass{f}=0).492\\493\weight{u+v} = 2^{2m-2} + 2^{m-1} & (\text{if~}\weightclass{f}=1).494\end{cases}495\end{align*}496497\end{Def}498Since $C(f)$ is a projective two-weight code,499$R(f)$ is a strongly regular graph.500501\slidecite{Delsarte 1972, Theorem 2}502\end{frame}503504\end{colortheme}505506\begin{colortheme}{jubata}507508\begin{frame}509\frametitle{The strongly regular graph $R(f)$ is \\ the Cayley graph of the dual}510511\begin{Theorem}512For $f : \F_2^{2m} \To \F_2$, with $f(0)=0$,513\begin{align*}514R(f) &\equiv \Cay{\dual{f} + \dual{f}(0)} = \Cay{\dual{f} + \weightclass{f}}.515\end{align*}516\end{Theorem}517518\end{frame}519520\end{colortheme}521522\section{Equivalence of bent functions}523524\begin{colortheme}{seagull}525526\begin{frame}527\frametitle{Extended affine equivalence}528529\begin{Def}530For bent functions $f,g : \F_2^{2m} \To \F_2$,531532$f$ is \Emph{extended affine equivalent} to $g$ if and only if533\begin{align*}534g(x) &= f(A x + b) + \langle c, x \rangle + \delta535\end{align*}536for some $A \in GL(2m,2)$, $b, c \in \F_2^{2m}$, $\delta \in \F_2$.537\end{Def}538~539540\slidecite{Budaghyan, Carlet and Pott 2006; Carlet and Mesnager 2011}541\end{frame}542543\end{colortheme}544545\begin{colortheme}{jubata}546547\begin{frame}548\frametitle{General linear equivalence}549550\begin{Def}551For bent functions $f,g : \F_2^{2m} \To \F_2$,552$f$ is \Emph{general linear equivalent} to $g$ if and only if553\begin{align*}554g(x) &= f(A x)555\end{align*}556for some $A \in GL(2m,2)$.557\end{Def}558\end{frame}559\begin{frame}560\frametitle{Extended translation equivalence}561562\begin{Def}563For bent functions $f,g : \F_2^{2m} \To \F_2$,564565$f$ is \Emph{extended translation equivalent} to $g$ if and only if566\begin{align*}567g(x) &= f(x + b) + \langle c, x \rangle + \delta568\end{align*}569for $b, c \in \F_2^{2m}$, $\delta \in \F_2$.570\end{Def}571\end{frame}572573\begin{frame}574\frametitle{Cayley equivalence}575\begin{Def}576%577For $f, g : \F_2^{2m} \To \F_2$, with both $f$ and $g$ bent,578579we call $f$ and $g$ \Emph{Cayley equivalent},580and write $f \equiv g$,581582if and only if $f(0)=g(0)=0$ and $\Cay{f} \equiv \Cay{g}$ as graphs.583584~585586Equivalently, $f \equiv g$ if and only if $f(0)=g(0)=0$ and587588there exists a bijection $\pi : \F_2^{2m} \To \F_2^{2m}$ such that589\begin{align*}590g(x+y) &= f \big(\pi(x)+\pi(y)\big) \quad \text{for all~} x,y \in \F_2^{2m}.591\end{align*}592\end{Def}593\end{frame}594\begin{frame}595\frametitle{Extended Cayley equivalence}596\begin{Def}597For $f, g : \F_2^{2m} \To \F_2$, with both $f$ and $g$ bent,598599if there exist $\delta, \epsilon \in \{0,1\}$ such that $f + \delta \equiv g + \epsilon$,600601we call $f$ and $g$ \Emph{extended Cayley (EC) equivalent} and write $f \cong g$.602\end{Def}603Extended Cayley equivalence is an equivalence relation on the set of all bent functions on $\F_2^{2m}$.604\end{frame}605606\begin{frame}607\frametitle{General linear equivalence \\ implies Cayley equivalence}608609\begin{Theorem}610If $f$ is bent with $f(0)=0$ and $g(x) := f(A x)$ where $A \in GL(2m,2)$,611then $g$ is bent with $g(0)=0$ and $f \equiv g$.612\end{Theorem}613\begin{proof}614\begin{align*}615g(x+y) &= f\big(A(x+y)\big) = f(A x + A y)\quad \text{for all~} x,y \in \F_2^{2m}.616\end{align*}617\end{proof}618619\end{frame}620621\begin{frame}622\frametitle{Extended affine, extended translation, and extended Cayley equivalence (1)}623624\begin{Theorem}625For $A \in GL(2m,2)$, $b, c \in \F_2^{2m}$, $\delta \in \F_2$,626$f : \F_2^{2m} \To \F_2$,627628the function629\begin{align*}630h(x) &:= f(A x + b) + \langle c, x \rangle + \delta631\intertext{can be expressed as $h(x) = g(A x)$ where}632g(x) &:= f(x+b) + \langle (A^{-1})^T c, x \rangle + \delta,633\end{align*}634and therefore if $f$ is bent then $h \cong g$.635\end{Theorem}636\end{frame}637638\begin{frame}639\frametitle{Extended affine, extended translation, and extended Cayley equivalence (2)}640641Therefore, to determine the extended Cayley equivalence classes within the extended affine equivalence class of642a bent function $f : \F_2^{2m} \To \F_2$, for which $f(0)=0$, we need only examine643the extended translation equivalent functions of the form644\begin{align*}645f(x+b) + \langle c, x \rangle + f(b),646\end{align*}647for each $b, c \in \F_2^{2m}$.648\end{frame}649650\begin{frame}651\frametitle{Quadratic bent functions have two \\ extended Cayley classes}652\begin{Theorem}653For each $m>0$, the extended affine equivalence class of quadratic bent functions654$q : \F_2^{2m} \To \F_2$ contains exactly two extended Cayley equivalence classes,655corresponding to the two possible weight classes of $x \mapsto q(x+b) + \langle c, x \rangle + q(b)$.656\end{Theorem}657658\end{frame}659660\end{colortheme}661662\section{Computational results for quadratic bent functions in low dimensions}663664\begin{colortheme}{jubata}665666\begin{frame}667\frametitle{For 2 dimensions: quadratic case: $[f_{2,1}]$}668\begin{figure}669\centering670\begin{minipage}{.48\textwidth}671\centering672\includegraphics[width=.9\linewidth]{../matrix_plot/c2_1_bent_cayley_graph_index_matrix.png}673\captionof{figure}{$[f_{2,1}]$: 2 extended Cayley classes}674\label{fig:q2_1_bent_cayley_graph_index_matrix}675\end{minipage}676\end{figure}677\end{frame}678\begin{frame}679\frametitle{For 4 dimensions: quadratic case: $[f_{4,1}]$}680\begin{figure}681\centering682\begin{minipage}{.48\textwidth}683\centering684\includegraphics[width=.9\linewidth]{../matrix_plot/c4_1_bent_cayley_graph_index_matrix.png}685\captionof{figure}{$[f_{4,1}]$: 2 extended Cayley classes}686\label{fig:q4_1_bent_cayley_graph_index_matrix}687\end{minipage}688\end{figure}689\end{frame}690\begin{frame}691\frametitle{For 6 dimensions: quadratic case: $[f_{6,1}]$}692\begin{figure}693\centering694\begin{minipage}{.48\textwidth}695\centering696\includegraphics[width=.9\linewidth]{../matrix_plot/c6_1_bent_cayley_graph_index_matrix.png}697\captionof{figure}{$[f_{6,1}]$: 2 extended Cayley classes}698\label{fig:q6_1_bent_cayley_graph_index_matrix}699\end{minipage}700\end{figure}701\end{frame}702\begin{frame}703\frametitle{For 8 dimensions: quadratic case: $[f_{8,1}]$}704\begin{figure}705\centering706\begin{minipage}{.48\textwidth}707\centering708\includegraphics[width=.9\linewidth]{../matrix_plot/c8_1_bent_cayley_graph_index_matrix.png}709\captionof{figure}{$[f_{8,1}]$: 2 extended Cayley classes}710\label{fig:q8_1_bent_cayley_graph_index_matrix}711\end{minipage}712\end{figure}713~714\end{frame}715716\end{colortheme}717718\section{Block designs}719720\begin{colortheme}{seagull}721722\begin{frame}723\frametitle{The two block designs of a bent function}724725The first block design of a bent function $f$ is obtained by interpreting726the adjacency matrix of $\Cay{f}$ as the incidence matrix of a block design.727In this case we do not need $f(0)=0$.728729~730\begin{Def}731The second block design of a bent function $f$ is defined by the incidence matrix732$D(f)$ where733\begin{align*}734D(f)_{c,x} &:= f(x) + \langle c, x \rangle + \dual{f}(c).735\end{align*}736This is a symmetric block design with the \Emph{symmetric difference property},737called the \Emph{SDP design} of $f$.738\end{Def}739740~741742\slidecite{Kantor 1975; Dillon and Schatz 1987; Neumann 2006}743\end{frame}744745\end{colortheme}746747\begin{colortheme}{jubata}748749\begin{frame}750\frametitle{The weight class matrix is \\ the SDP design matrix}751\begin{Theorem}752For every bent function $f$, the \Emph{weight class matrix} of the ET class of $f$753equals the incidence matrix of the SDP design of $f$.754755~756757Specifically,758\begin{align*}759\weightclass{x \mapsto f(x+b) + \langle c, x \rangle + f(b)}760&=761f(b) + \langle c, b \rangle + \dual{f}(c)762\\763&=764D(f)_{c,b}.765\end{align*}766767\end{Theorem}768769\end{frame}770771\end{colortheme}772773\section{Computational results for low dimensions}774775\begin{colortheme}{jubata}776777\begin{frame}778\frametitle{For 2 dimensions: classes}779780One extended affine class, containing the extended translation class $[f_{2,1}]$,781where $f_{2,1}(x) := x_0 x_1$ is self dual.782783~784785Two extended Cayley classes:786\begin{align*}787\begin{array}{|cccl|}788\hline789\text{Class} &790\text{Parameters} &791\text{2-rank} &792\text{Clique polynomial}793\\794\hline7951 &796(4, 1, 0, 0) & 4 &7972t^{2} + 4t + 1798\\7992 &800K_4 & 4 &801t^{4} + 4t^{3} + 6t^{2} + 4t + 1802\\803\hline804\end{array}805\end{align*}806807\end{frame}808\begin{frame}809\frametitle{For ET class $[f_{2,1}]$: matrices}810\begin{figure}811\centering812\begin{minipage}{.48\textwidth}813\centering814\includegraphics[width=.9\linewidth]{../matrix_plot/c2_1_weight_class_matrix.png}815\captionof{figure}{$[f_{2,1}]$: weight classes}816\label{fig:c2_1_weight_class_matrix}817\end{minipage}%818\begin{minipage}{.48\textwidth}819\centering820\includegraphics[width=.9\linewidth]{../matrix_plot/c2_1_bent_cayley_graph_index_matrix.png}821\captionof{figure}{$[f_{2,1}]$: extended Cayley classes}822\label{fig:c2_1_bent_cayley_graph_index_matrix}823\end{minipage}824\end{figure}825\end{frame}826\begin{frame}827\frametitle{For 4 dimensions: classes}828829One extended affine class, containing the extended translation class $[f_{4,1}]$, where830$f_{4,1}(x) := x_0 x_1 + x_2 x_3$ is self dual.831832~833834Two extended Cayley classes:835\begin{align*}836\begin{array}{|cccl|}837\hline838\text{Class} &839\text{Parameters} &840\text{2-rank} &841\text{Clique polynomial}842\\843\hline8441 &845(16, 6, 2, 2) &8466 &8478t^{4} + 32t^{3} + 48t^{2} + 16t + 1848\\8492 &850(16, 10, 6, 6) &8516 &852\begin{array}{l}85316t^{5} + 120t^{4} + 160t^{3} +854\\85580t^{2} + 16t + 1856\end{array}857\\858\hline859\end{array}860\end{align*}861\end{frame}862\begin{frame}863\frametitle{For ET class $[f_{4,1}]$: matrices}864\begin{figure}865\centering866\begin{minipage}{.48\textwidth}867\centering868\includegraphics[width=.9\linewidth]{../matrix_plot/c4_1_weight_class_matrix.png}869\captionof{figure}{$[f_{4,1}]$: weight classes}870\label{fig:c4_1_weight_class_matrix}871\end{minipage}%872\begin{minipage}{.48\textwidth}873\centering874\includegraphics[width=.9\linewidth]{../matrix_plot/c4_1_bent_cayley_graph_index_matrix.png}875\captionof{figure}{$[f_{4,1}]$: extended Cayley classes}876\label{fig:c4_1_bent_cayley_graph_index_matrix}877\end{minipage}878\end{figure}879\end{frame}880881\end{colortheme}882883\begin{colortheme}{seagull}884885\begin{frame}886\frametitle{For 6 dimensions: ET classes}887888Four extended affine classes, containing the following extended translation classes:889890\begin{align*}891\def\arraystretch{1.2}892\begin{array}{|cl|}893\hline894\text{Class} &895\text{Representative}896\\897\hline898\,[f_{6,1}] & f_{6,1} :=899\begin{array}{l}900x_{0} x_{1} + x_{2} x_{3} + x_{4} x_{5}901\end{array}902\\903\,[f_{6,2}] & f_{6,2} :=904\begin{array}{l}905x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5}906\end{array}907\\908\,[f_{6,3}] & f_{6,3} :=909\begin{array}{l}910x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5}911\\912+\, x_{2} x_{4} + x_{3} x_{4}913\end{array}914\\915\,[f_{6,4}] & f_{6,4} :=916\begin{array}{l}917x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}918\\919+\, x_{2} x_{3} + x_{2} x_{4} + x_{2} x_{5} + x_{3} x_{4} + x_{3} x_{5}920\end{array}921\\922\hline923\end{array}924\end{align*}925\slidecite{Rothaus 1976; Tokareva 2015}926\end{frame}927928\end{colortheme}929930\begin{colortheme}{jubata}931932\begin{frame}933\frametitle{For ET class $[f_{6,1}]$: EC classes}934935Bent function936$f_{6,1}(x) = x_0 x_1 + x_2 x_3 + x_4 x_5$ is self dual.937938~939940Two extended Cayley classes corresponding to Tonchev's projective two-weight codes:941\begin{align*}942\def\arraystretch{1.2}943\begin{array}{|ccl|}944\hline945\text{Class} &946\text{Parameters} & \text{Reference}947\\948\hline9490 & [35,6,16] & \text{Table 1.156 1, 2 (complement)}950\\9511 & [27,6,12] & \text{Table 1.155 1 }952\\953\hline954\end{array}955\end{align*}956957Graph for class 0 is also isomorphic to the complement of Royle's $(64,35,18,20)$ strongly regular958graph $X$.959960\slidecite{Tonchev 1996, 2006; Royle 2008}961\end{frame}962\begin{frame}963\frametitle{For ET class $[f_{6,1}]$: matrices}964\begin{figure}965\centering966\begin{minipage}{.48\textwidth}967\centering968\includegraphics[width=.9\linewidth]{../matrix_plot/c6_1_weight_class_matrix.png}969\captionof{figure}{$[f_{6,1}]$: weight classes}970\label{fig:6_1_weight_class_matrix}971\end{minipage}%972\begin{minipage}{.48\textwidth}973\centering974\includegraphics[width=.9\linewidth]{../matrix_plot/c6_1_bent_cayley_graph_index_matrix.png}975\captionof{figure}{$[f_{6,1}]$: 2 extended Cayley classes}976\label{fig:6_1_bent_cayley_graph_index_matrix}977\end{minipage}978\end{figure}979\end{frame}980\begin{frame}981\frametitle{For ET class $[f_{6,2}]$: EC classes}982983Bent function984$f_{6,2}(x) = x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5}$.985986~987988Three extended Cayley classes corresponding to Tonchev's projective two-weight codes:989\begin{align*}990\def\arraystretch{1.2}991\begin{array}{|ccl|}992\hline993\text{Class} &994\text{Parameters} & \text{Reference}995\\996\hline9970 & [35,6,16] & \text{Table 1.156 1, 2 (complement)}998\\9991 & [35,6,16] & \text{Table 1.156 3 (complement)}1000\\10012 & [27,6,12] & \text{Table 1.155 2 }1002\\1003\hline1004\end{array}1005\end{align*}10061007Graph for class 0 is also isomorphic to that of $[f_{6,1}]$ class 0.10081009\slidecite{Tonchev 1996, 2006}1010\end{frame}1011\begin{frame}1012\frametitle{For ET class $[f_{6,2}]$: matrices}1013\begin{figure}1014\centering1015\begin{minipage}{.48\textwidth}1016\centering1017\includegraphics[width=.9\linewidth]{../matrix_plot/c6_2_weight_class_matrix.png}1018\captionof{figure}{$[f_{6,2}]$: weight classes}1019\label{fig:6_2_weight_class_matrix}1020\end{minipage}%1021\begin{minipage}{.48\textwidth}1022\centering1023\includegraphics[width=.9\linewidth]{../matrix_plot/c6_2_bent_cayley_graph_index_matrix.png}1024\captionof{figure}{$[f_{6,2}]$: 3 extended Cayley classes}1025\label{fig:6_2_bent_cayley_graph_index_matrix}1026\end{minipage}1027\end{figure}1028\end{frame}1029\begin{frame}1030\frametitle{For ET class $[f_{6,3}]$: EC classes}10311032Bent function1033\begin{align*}1034f_{6,3}(x) &= x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{3} + x_{1} x_{3} x_{4}1035\\1036&+ x_{1} x_{5} + x_{2} x_{4} + x_{3} x_{4}.1037\end{align*}10381039Four extended Cayley classes corresponding to Tonchev's projective two-weight codes:1040\begin{align*}1041\def\arraystretch{1.2}1042\begin{array}{|ccl|}1043\hline1044\text{Class} &1045\text{Parameters} & \text{Reference}1046\\1047\hline10480 & [35,6,16] & \text{Table 1.156 4 (complement)}1049\\10501 & [27,6,12] & \text{Table 1.155 3 }1051\\10522 & [35,6,16] & \text{Table 1.156 5 (complement)}1053\\10543 & [27,6,12] & \text{Table 1.155 4 }1055\\1056\hline1057\end{array}1058\end{align*}10591060\slidecite{Tonchev 1996, 2006}1061\end{frame}1062\begin{frame}1063\frametitle{For ET class $[f_{6,3}]$: matrices}1064\begin{figure}1065\centering1066\begin{minipage}{.48\textwidth}1067\centering1068\includegraphics[width=.9\linewidth]{../matrix_plot/c6_3_weight_class_matrix.png}1069\captionof{figure}{$[f_{6,3}]$: weight classes}1070\label{fig:6_3_weight_class_matrix}1071\end{minipage}%1072\begin{minipage}{.48\textwidth}1073\centering1074\includegraphics[width=.9\linewidth]{../matrix_plot/c6_3_bent_cayley_graph_index_matrix.png}1075\captionof{figure}{$[f_{6,3}]$: 4 extended Cayley classes}1076\label{fig:6_3_bent_cayley_graph_index_matrix}1077\end{minipage}1078\end{figure}1079\end{frame}1080\begin{frame}1081\frametitle{For ET class $[f_{6,4}]$: EC classes}10821083Bent function1084\begin{align*}1085f_{6,4}(x) &= x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}1086\\1087&+ x_{2} x_{3} + x_{2} x_{4} + x_{2} x_{5} + x_{3} x_{4} + x_{3} x_{5}.1088\end{align*}10891090Three extended Cayley classes corresponding to Tonchev's projective two-weight codes:1091\begin{align*}1092\def\arraystretch{1.2}1093\begin{array}{|ccl|}1094\hline1095\text{Class} &1096\text{Parameters} & \text{Reference}1097\\1098\hline10990 & [35,6,16] & \text{Table 1.156 7 (complement)}1100\\11011 & [35,6,16] & \text{Table 1.156 6 (complement)}1102\\11032 & [27,6,12] & \text{Table 1.155 5 }1104\\1105\hline1106\end{array}1107\end{align*}11081109\slidecite{Tonchev 1996, 2006}1110\end{frame}1111\begin{frame}1112\frametitle{For ET class $[f_{6,4}]$: matrices}1113\begin{figure}1114\centering1115\begin{minipage}{.48\textwidth}1116\centering1117\includegraphics[width=.9\linewidth]{../matrix_plot/c6_4_weight_class_matrix.png}1118\captionof{figure}{$[f_{6,4}]$: weight classes}1119\label{fig:6_4_weight_class_matrix}1120\end{minipage}%1121\begin{minipage}{.48\textwidth}1122\centering1123\includegraphics[width=.9\linewidth]{../matrix_plot/c6_4_bent_cayley_graph_index_matrix.png}1124\captionof{figure}{$[f_{6,4}]$: 3 extended Cayley classes}1125\label{fig:6_4_bent_cayley_graph_index_matrix}1126\end{minipage}1127\end{figure}1128\end{frame}11291130\end{colortheme}11311132\begin{colortheme}{seagull}11331134\begin{frame}1135\frametitle{For 8 dimensions: \\ number of bent functions and EA classes}11361137According to Langevin and Leander (2011)1138there are $99270589265934370305785861242880 \approx 2^{106}$ bent functions in dimension 8.11391140~11411142The number of EA classes has not yet been published, let alone a list of representatives.11431144\slidecite{Langevin and Leander 2011}1145\end{frame}11461147\begin{frame}1148\frametitle{For 8 dimensions, up to degree 3: \\ extended translation classes}11491150Ten extended affine classes,11511152containing the following extended translation classes:11531154\tiny{}1155\begin{align*}1156\def\arraystretch{1.2}1157\begin{array}{|cl|}1158\hline1159\text{Class} &1160\text{Representative}1161\\1162\hline1163\,[f_{ 8 , 1 }] & f_{ 8 , 1 } :=1164\begin{array}{l}1165x_{0} x_{1} + x_{2} x_{3} + x_{4} x_{5} + x_{6} x_{7}1166\end{array}1167\\1168\,[f_{ 8 , 2 }] & f_{ 8 , 2 } :=1169\begin{array}{l}1170x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5} + x_{6} x_{7}1171\end{array}1172\\1173\,[f_{ 8 , 3 }] & f_{ 8 , 3 } :=1174\begin{array}{l}1175x_{0} x_{1} x_{2} + x_{0} x_{6} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} + x_{4} x_{7}1176\end{array}1177\\1178\,[f_{ 8 , 4 }] & f_{ 8 , 4 } :=1179\begin{array}{l}1180x_{0} x_{1} x_{2} + x_{0} x_{2} + x_{0} x_{4} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} + x_{6} x_{7}1181\end{array}1182\\1183\,[f_{ 8 , 5 }] & f_{ 8 , 5 } :=1184\begin{array}{l}1185x_{0} x_{1} x_{2} + x_{0} x_{6} + x_{1} x_{3} x_{4} + x_{1} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{3} x_{7}1186\end{array}1187\\1188\,[f_{ 8 , 6 }] & f_{ 8 , 6 } :=1189\begin{array}{l}1190x_{0} x_{1} x_{2} + x_{0} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{5} x_{7}1191\end{array}1192\\1193\,[f_{ 8 , 7 }] & f_{ 8 , 7 } :=1194\begin{array}{l}1195x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}1196\\1197+\, x_{2} x_{4} + x_{6} x_{7}1198\end{array}1199\\1200\,[f_{ 8 , 8 }] & f_{ 8 , 8 } :=1201\begin{array}{l}1202x_{0} x_{1} x_{2} + x_{0} x_{5} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{3} x_{7}1203\end{array}1204\\1205\,[f_{ 8 , 9 }] & f_{ 8 , 9 } :=1206\begin{array}{l}1207x_{0} x_{1} x_{6} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{3} x_{6} + x_{2} x_{5} + x_{3} x_{4} + x_{4} x_{5} x_{6} + x_{6} x_{7}1208\end{array}1209\\1210\,[f_{ 8 , 10 }] & f_{ 8 , 10 } :=1211\begin{array}{l}1212x_{0} x_{1} x_{2} + x_{0} x_{3} x_{6} + x_{0} x_{4} + x_{0} x_{5} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4}1213\\1214+\, x_{3} x_{7}1215\end{array}1216\\1217\hline1218\end{array}1219\end{align*}1220\slidecite{Braeken 2006; Tokareva 2015}1221\normalsize{}1222\end{frame}12231224\end{colortheme}12251226\begin{colortheme}{jubata}12271228\begin{frame}1229\frametitle{For ET class $[f_{8,1}]$: matrices}1230\begin{figure}1231\centering1232\begin{minipage}{.48\textwidth}1233\centering1234\includegraphics[width=.9\linewidth]{../matrix_plot/c8_1_weight_class_matrix.png}1235\captionof{figure}{$[f_{8,1}]$: weight classes}1236\label{fig:8_1_weight_class_matrix}1237\end{minipage}%1238\begin{minipage}{.48\textwidth}1239\centering1240\includegraphics[width=.9\linewidth]{../matrix_plot/c8_1_bent_cayley_graph_index_matrix.png}1241\captionof{figure}{$[f_{8,1}]$: 2 extended Cayley classes}1242\label{fig:8_1_bent_cayley_graph_index_matrix}1243\end{minipage}1244\end{figure}1245~1246\end{frame}1247\begin{frame}1248\frametitle{For ET class $[f_{8,2}]$: matrices}1249\begin{figure}1250\centering1251\begin{minipage}{.48\textwidth}1252\centering1253\includegraphics[width=.9\linewidth]{../matrix_plot/c8_2_weight_class_matrix.png}1254\captionof{figure}{$[f_{8,2}]$: weight classes}1255\label{fig:8_2_weight_class_matrix}1256\end{minipage}%1257\begin{minipage}{.48\textwidth}1258\centering1259\includegraphics[width=.9\linewidth]{../matrix_plot/c8_2_bent_cayley_graph_index_matrix.png}1260\captionof{figure}{$[f_{8,2}]$: 4 extended Cayley classes}1261\label{fig:8_2_bent_cayley_graph_index_matrix}1262\end{minipage}1263\end{figure}1264Graph for class 0 is isomorphic to graph for class 0 of $[f_{8,1}]$.1265\end{frame}1266\begin{frame}1267\frametitle{For ET class $[f_{8,3}]$: matrices}1268\begin{figure}1269\centering1270\begin{minipage}{.48\textwidth}1271\centering1272\includegraphics[width=.9\linewidth]{../matrix_plot/c8_3_weight_class_matrix.png}1273\captionof{figure}{$[f_{8,3}]$: weight classes}1274\label{fig:8_3_weight_class_matrix}1275\end{minipage}%1276\begin{minipage}{.48\textwidth}1277\centering1278\includegraphics[width=.9\linewidth]{../matrix_plot/c8_3_bent_cayley_graph_index_matrix.png}1279\captionof{figure}{$[f_{8,3}]$: 6 extended Cayley classes}1280\label{fig:8_3_bent_cayley_graph_index_matrix}1281\end{minipage}1282\end{figure}1283~1284\end{frame}1285\begin{frame}1286\frametitle{For ET class $[f_{8,4}]$: matrices}1287\begin{figure}1288\centering1289\begin{minipage}{.48\textwidth}1290\centering1291\includegraphics[width=.9\linewidth]{../matrix_plot/c8_4_weight_class_matrix.png}1292\captionof{figure}{$[f_{8,4}]$: weight classes}1293\label{fig:8_4_weight_class_matrix}1294\end{minipage}%1295\begin{minipage}{.48\textwidth}1296\centering1297\includegraphics[width=.9\linewidth]{../matrix_plot/c8_4_bent_cayley_graph_index_matrix.png}1298\captionof{figure}{$[f_{8,4}]$: 5 extended Cayley classes}1299\label{fig:8_4_bent_cayley_graph_index_matrix}1300\end{minipage}1301\end{figure}1302~1303\end{frame}1304\begin{frame}1305\frametitle{For ET class $[f_{8,5}]$: matrices}1306\begin{figure}1307\centering1308\begin{minipage}{.48\textwidth}1309\centering1310\includegraphics[width=.9\linewidth]{../matrix_plot/c8_5_weight_class_matrix.png}1311\captionof{figure}{$[f_{8,5}]$: weight classes}1312\label{fig:8_5_weight_class_matrix}1313\end{minipage}%1314\begin{minipage}{.48\textwidth}1315\centering1316\includegraphics[width=.9\linewidth]{../matrix_plot/c8_5_bent_cayley_graph_index_matrix.png}1317\captionof{figure}{$[f_{8,5}]$: 9 extended Cayley classes}1318\label{fig:8_5_bent_cayley_graph_index_matrix}1319\end{minipage}1320\end{figure}1321~1322\end{frame}1323\begin{frame}1324\frametitle{For ET class $[f_{8,6}]$: matrices}1325\begin{figure}1326\centering1327\begin{minipage}{.48\textwidth}1328\centering1329\includegraphics[width=.9\linewidth]{../matrix_plot/c8_6_weight_class_matrix.png}1330\captionof{figure}{$[f_{8,6}]$: weight classes}1331\label{fig:8_6_weight_class_matrix}1332\end{minipage}%1333\begin{minipage}{.48\textwidth}1334\centering1335\includegraphics[width=.9\linewidth]{../matrix_plot/c8_6_bent_cayley_graph_index_matrix.png}1336\captionof{figure}{$[f_{8,6}]$: 9 extended Cayley classes}1337\label{fig:8_6_bent_cayley_graph_index_matrix}1338\end{minipage}1339\end{figure}1340The same 9 classes as $[f_{8,5}]$, with the same frequencies!1341\end{frame}1342\begin{frame}1343\frametitle{For ET class $[f_{8,7}]$: matrices}1344\begin{figure}1345\centering1346\begin{minipage}{.48\textwidth}1347\centering1348\includegraphics[width=.9\linewidth]{../matrix_plot/c8_7_weight_class_matrix.png}1349\captionof{figure}{$[f_{8,7}]$: weight classes}1350\label{fig:8_7_weight_class_matrix}1351\end{minipage}%1352\begin{minipage}{.48\textwidth}1353\centering1354\includegraphics[width=.9\linewidth]{../matrix_plot/c8_7_bent_cayley_graph_index_matrix.png}1355\captionof{figure}{$[f_{8,7}]$: 5 extended Cayley classes}1356\label{fig:8_7_bent_cayley_graph_index_matrix}1357\end{minipage}1358\end{figure}1359~1360\end{frame}1361\begin{frame}1362\frametitle{For ET class $[f_{8,8}]$: matrices}1363\begin{figure}1364\centering1365\begin{minipage}{.48\textwidth}1366\centering1367\includegraphics[width=.9\linewidth]{../matrix_plot/c8_8_weight_class_matrix.png}1368\captionof{figure}{$[f_{8,8}]$: weight classes}1369\label{fig:8_8_weight_class_matrix}1370\end{minipage}%1371\begin{minipage}{.48\textwidth}1372\centering1373\includegraphics[width=.9\linewidth]{../matrix_plot/c8_8_bent_cayley_graph_index_matrix.png}1374\captionof{figure}{$[f_{8,8}]$: 6 extended Cayley classes}1375\label{fig:8_8_bent_cayley_graph_index_matrix}1376\end{minipage}1377\end{figure}1378~1379\end{frame}1380\begin{frame}1381\frametitle{For ET class $[f_{8,9}]$: matrices}1382\begin{figure}1383\centering1384\begin{minipage}{.48\textwidth}1385\centering1386\includegraphics[width=.9\linewidth]{../matrix_plot/c8_9_bent_cayley_graph_index_matrix.png}1387\captionof{figure}{$[f_{8,9}]$: 8 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}1388\label{fig:c8_9_bent_cayley_graph_index_matrix}1389\end{minipage}1390\begin{minipage}{.48\textwidth}1391\centering1392\includegraphics[width=.9\linewidth]{../matrix_plot/c8_9_dual_cayley_graph_index_matrix.png}1393\captionof{figure}{$[f_{8,9}]$: 8 extended Cayley classes of dual bent functions}1394\label{fig:c8_9_dual_cayley_graph_index_matrix}1395\end{minipage}%1396\end{figure}13974 of the 8 classes form 2 dual pairs of classes.1398\end{frame}1399\begin{frame}1400\frametitle{For ET class $[f_{8,10}]$: matrices}1401\begin{figure}1402\centering1403\begin{minipage}{.48\textwidth}1404\centering1405\includegraphics[width=.9\linewidth]{../matrix_plot/c8_10_bent_cayley_graph_index_matrix.png}1406\captionof{figure}{$[f_{8,10}]$: 10 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}1407\label{fig:c8_10_bent_cayley_graph_index_matrix}1408\end{minipage}1409\begin{minipage}{.48\textwidth}1410\centering1411\includegraphics[width=.9\linewidth]{../matrix_plot/c8_10_dual_cayley_graph_index_matrix.png}1412\captionof{figure}{$[f_{8,10}]$: 10 extended Cayley classes of dual bent functions}1413\label{fig:c8_10_dual_cayley_graph_index_matrix}1414\end{minipage}%1415\end{figure}14166 of the 10 classes form 3 dual pairs of classes.1417\end{frame}14181419\end{colortheme}14201421\begin{colortheme}{seagull}14221423\begin{frame}[fragile]1424\frametitle{For 8 dimensions: number of partial spread \\ bent functions and EA classes}14251426According to Langevin and Hou (2011)1427there are $70576747237594114392064 \approx 2^{75.9}$ \Emph{partial spread} bent functions in dimension 8,1428contained in $14758$ EA classes, of which $14756$ have degree 4.14291430~14311432The EA class representatives are listed at Langevin's web site14331434\begin{verbatim}1435http://langevin.univ-tln.fr/project/spread/psp.html1436\end{verbatim}14371438\slidecite{Langevin and Hou 2011}1439\end{frame}14401441\end{colortheme}14421443\begin{colortheme}{jubata}14441445\begin{frame}1446\frametitle{Example partial spread ET class $[psf_{9,5439}]$}1447\begin{figure}1448\centering1449\begin{minipage}{.48\textwidth}1450\centering1451\includegraphics[width=.9\linewidth]{../matrix_plot/psf_9_5439_bent_cayley_graph_index_matrix.png}1452\captionof{figure}{$[psf_{9,5439}]$: 16 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}1453\label{fig:psf_9_5439_bent_cayley_graph_index_matrix}1454\end{minipage}1455\begin{minipage}{.48\textwidth}1456\centering1457\includegraphics[width=.9\linewidth]{../matrix_plot/psf_9_5439_dual_cayley_graph_index_matrix.png}1458\captionof{figure}{$[psf_{9,5439}]$: 16 extended Cayley classes of dual bent functions}1459\label{fig:psf_9_5439_dual_cayley_graph_index_matrix}1460\end{minipage}%1461\end{figure}14626 of the 16 classes form 3 dual pairs of classes.1463\end{frame}14641465\end{colortheme}14661467\begin{colortheme}{seagull}14681469\begin{frame}[fragile]1470\frametitle{For 8 dimensions: Bent functions from CAST-128 S-boxes}14711472The CAST-128 encryption algorithm is used in PGP and elsewhere.14731474CAST-128, including the S-boxes, is specified by IETF RFC 2144:1475\begin{verbatim}1476https://www.ietf.org/rfc/rfc2144.txt1477\end{verbatim}14781479The algorithm uses 8 S-boxes, each of which consists of 32 binary bent functions in 8 dimensions,1480with degree 4.14811482~14831484\slidecite{Adams 1997}1485\end{frame}14861487\end{colortheme}14881489\begin{colortheme}{jubata}14901491\begin{frame}1492\frametitle{CAST-128 ET class $[cast128_{1,0}]$}1493\begin{figure}1494\centering1495\begin{minipage}{.48\textwidth}1496\centering14971498\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_1_0_weight_class_matrix.png}1499\captionof{figure}{$[cast128_{1,0}]$: weight classes ~~~~~~ ~~~~~~~~}1500\label{fig:cast128_1_0_weight_class_matrix}1501\end{minipage}1502\begin{minipage}{.48\textwidth}1503\centering1504\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_1_0_bent_cayley_graph_index_matrix.png}1505\captionof{figure}{$[cast128_{1,0}]$: $65\,536$ extended Cayley classes}1506\label{fig:cast128_1_0_bent_cayley_graph_index_matrix}1507\end{minipage}%1508\end{figure}1509Dual bent functions yield another $65\,536$ extended Cayley classes.1510\end{frame}1511\begin{frame}1512\frametitle{CAST-128 ET class $[cast128_{2,1}]$}1513\begin{figure}1514\centering1515\begin{minipage}{.48\textwidth}1516\centering15171518\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_2_1_weight_class_matrix.png}1519\captionof{figure}{$[cast128_{2,1}]$: weight classes ~~~~~~ ~~~~~~~~}1520\label{fig:cast128_2_1_weight_class_matrix}1521\end{minipage}1522\begin{minipage}{.48\textwidth}1523\centering1524\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_2_1_bent_cayley_graph_index_matrix.png}1525\captionof{figure}{$[cast128_{2,1}]$: $8\,256$ extended Cayley classes}1526\label{fig:cast128_2_1_bent_cayley_graph_index_matrix}1527\end{minipage}%1528\end{figure}1529Dual bent functions yield the same $8\,256$ extended Cayley classes.1530\end{frame}15311532\begin{frame}1533\frametitle{CAST-128 ET class $[cast128_{2,16}]$}1534\begin{figure}1535\centering1536\begin{minipage}{.48\textwidth}1537\centering15381539\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_2_16_weight_class_matrix.png}1540\captionof{figure}{$[cast128_{2,16}]$: weight classes ~~~~~~ ~~~~~~~~}1541\label{fig:cast128_2_16_weight_class_matrix}1542\end{minipage}1543\begin{minipage}{.48\textwidth}1544\centering1545\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_2_16_bent_cayley_graph_index_matrix.png}1546\captionof{figure}{$[cast128_{2,16}]$: $32\,768$ extended Cayley classes}1547\label{fig:cast128_2_16_bent_cayley_graph_index_matrix}1548\end{minipage}%1549\end{figure}1550Dual bent functions yield another $32\,768$ extended Cayley classes.1551\end{frame}15521553\begin{frame}1554\frametitle{CAST-128 ET class $[cast128_{4,27}]$}1555\begin{figure}1556\centering1557\begin{minipage}{.48\textwidth}1558\centering15591560\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_4_27_weight_class_matrix.png}1561\captionof{figure}{$[cast128_{4,27}]$: weight classes ~~~~~~ ~~~~~~~~}1562\label{fig:cast128_4_27_weight_class_matrix}1563\end{minipage}1564\begin{minipage}{.48\textwidth}1565\centering1566\includegraphics[width=.9\linewidth]{../matrix_plot/cast128_4_27_bent_cayley_graph_index_matrix.png}1567\captionof{figure}{$[cast128_{4,27}]$: $65\,536$ extended Cayley classes}1568\label{fig:cast128_4_27_bent_cayley_graph_index_matrix}1569\end{minipage}%1570\end{figure}1571Dual bent functions yield the same $65\,536$ extended Cayley classes.1572\end{frame}1573\end{colortheme}15741575\section{Computational results for $\sigma_m$ and $\tau_m$}15761577\begin{colortheme}{jubata}15781579\begin{frame}1580\frametitle{For 2 dimensions: $[\sigma_1]$ and $[\tau_1]$}1581\begin{figure}1582\centering1583\begin{minipage}{.48\textwidth}1584\centering1585\includegraphics[width=.9\linewidth]{../matrix_plot/sigma_1_bent_cayley_graph_index_matrix.png}1586\captionof{figure}{$[\sigma_1]$: 2 extended Cayley classes}1587\label{fig:sigma_1_bent_cayley_graph_index_matrix}1588\end{minipage}%1589\begin{minipage}{.48\textwidth}1590\centering1591\includegraphics[width=.9\linewidth]{../matrix_plot/tau_1_bent_cayley_graph_index_matrix.png}1592\captionof{figure}{$[\tau_1]$: 2 extended Cayley classes}1593\label{fig:tau_1_bent_cayley_graph_index_matrix}1594\end{minipage}1595\end{figure}1596\end{frame}15971598\begin{frame}1599\frametitle{For 4 dimensions: $[\sigma_2]$ and $[\tau_2]$}1600\begin{figure}1601\centering1602\begin{minipage}{.48\textwidth}1603\centering1604\includegraphics[width=.9\linewidth]{../matrix_plot/sigma_2_bent_cayley_graph_index_matrix.png}1605\captionof{figure}{$[\sigma_2]$: 2 extended Cayley classes}1606\label{fig:sigma_2_bent_cayley_graph_index_matrix}1607\end{minipage}%1608\begin{minipage}{.48\textwidth}1609\centering1610\includegraphics[width=.9\linewidth]{../matrix_plot/tau_2_bent_cayley_graph_index_matrix.png}1611\captionof{figure}{$[\tau_2]$: 2 extended Cayley classes}1612\label{fig:tau_2_bent_cayley_graph_index_matrix}1613\end{minipage}1614\end{figure}1615\end{frame}16161617\begin{frame}1618\frametitle{For 6 dimensions: $[\sigma_3]$ and $[\tau_3]$}1619\begin{figure}1620\centering1621\begin{minipage}{.48\textwidth}1622\centering1623\includegraphics[width=.9\linewidth]{../matrix_plot/sigma_3_bent_cayley_graph_index_matrix.png}1624\captionof{figure}{$[\sigma_3]$: 2 extended Cayley classes}1625\label{fig:sigma_3_bent_cayley_graph_index_matrix}1626\end{minipage}%1627\begin{minipage}{.48\textwidth}1628\centering1629\includegraphics[width=.9\linewidth]{../matrix_plot/tau_3_bent_cayley_graph_index_matrix.png}1630\captionof{figure}{$[\tau_3]$: 3 extended Cayley classes}1631\label{fig:tau_3_bent_cayley_graph_index_matrix}1632\end{minipage}1633\end{figure}1634\end{frame}16351636\begin{frame}1637\frametitle{For 8 dimensions: $[\sigma_4]$ and $[\tau_4]$}1638\begin{figure}1639\centering1640\begin{minipage}{.48\textwidth}1641\centering1642\includegraphics[width=.9\linewidth]{../matrix_plot/sigma_4_bent_cayley_graph_index_matrix.png}1643\captionof{figure}{$[\sigma_4]$: 2 extended Cayley classes}1644\label{fig:sigma_4_bent_cayley_graph_index_matrix}1645\end{minipage}%1646\begin{minipage}{.48\textwidth}1647\centering1648\includegraphics[width=.9\linewidth]{../matrix_plot/tau_4_bent_cayley_graph_index_matrix.png}1649\captionof{figure}{$[\tau_4]$: 5 extended Cayley classes}1650\label{fig:tau_4_bent_cayley_graph_index_matrix}1651\end{minipage}1652\end{figure}1653\end{frame}1654\end{colortheme}16551656\section{Questions}16571658\begin{colortheme}{jubata}16591660\begin{frame}1661\frametitle{Open problems (1)}1662Settled only for dimensions up to 6:1663\begin{enumerate}1664\item1665How many EC classes are there for each dimension?1666Are there ``Exponential numbers'' of classes?1667\item1668In $n$ dimensions,1669which ET classes contain the maximum number, $4^n$, of different EC classes?1670\item1671Which EC classes overlap more than one ET class?1672\item1673Which bent functions are Cayley equivalent to their dual?1674\item1675Which bent functions are EA equivalent to their dual?1676\end{enumerate}16771678\slidecite{Kantor 1983; Jungnickel and Tonchev 1991; Langevin, Leander and McGuire 2008}1679\end{frame}16801681\begin{frame}1682\frametitle{Open problems (2)}1683Also:16841685~16861687\begin{enumerate}1688\item1689What are the remaining EA and EC classes of binary bent functions of dimension 8 and degree 4?16901691~16921693\item1694How do extended Cayley classes of bent functions generalize to bent functions over $\F_p$, $p \neq 2$?1695\end{enumerate}16961697\slidecite{Langevin and Leander 2011; Chee, Tan and Zhang 2011}1698\end{frame}16991700\end{colortheme}17011702\section{Source code}17031704\begin{colortheme}{jubata}17051706\begin{frame}[fragile]1707\frametitle{Source code and documentation}1708~17091710CoCalc: Public worksheets, Sage and Python source code17111712\begin{verbatim}1713http://tinyurl.com/Boolean-Cayley-graphs1714\end{verbatim}17151716~17171718GitHub: Sage and Python source code17191720\begin{verbatim}1721https://github.com/penguian/Boolean-Cayley-graphs1722\end{verbatim}17231724~17251726SourceForge: Documentation17271728\begin{verbatim}1729https://boolean-cayley-graphs.sourceforge.io/1730\end{verbatim}1731\end{frame}17321733\end{colortheme}17341735\section{Last}17361737\begin{colortheme}{jubata}17381739\begin{frame}1740\frametitle{Thank you.}17411742\begin{figure}1743\centering1744\begin{minipage}{.48\textwidth}1745\centering1746\includegraphics[width=.9\linewidth]{../matrix_plot/tau_3_bent_cayley_graph_index_matrix.png}1747\captionof{figure}{$[\tau_3]$: 3 extended Cayley classes}1748\label{fig:again_tau_3_bent_cayley_graph_index_matrix}1749\end{minipage}1750\begin{minipage}{.48\textwidth}1751\centering1752\includegraphics[width=.9\linewidth]{../matrix_plot/tau_4_bent_cayley_graph_index_matrix.png}1753\captionof{figure}{$[\tau_4]$: 5 extended Cayley classes}1754\label{fig:again_tau_4_bent_cayley_graph_index_matrix}1755\end{minipage}%1756\end{figure}1757\end{frame}17581759\end{colortheme}17601761\end{document}176217631764