Boolean-Cayley-graphs / papers-talks / Bent-functions-Cayley-graphs / Leopardi-Bent-functions-Cayley-graphs.bbl
22144 views\begin{thebibliography}{10}12\bibitem{RFC2144}3C.~M. Adams.4\newblock The {CAST-128} encryption algorithm.5\newblock RFC 2144, RFC Editor, May 1997.67\bibitem{Ada97}8C.~M. Adams.9\newblock Constructing symmetric ciphers using the {CAST} design procedure.10\newblock In E.~Kranakis and P.~Van~Oorschot, editors, {\em Selected Areas in11Cryptography}, 71--104, Boston, MA, (1997). Springer US.1213\bibitem{BerC99}14A.~Bernasconi and B.~Codenotti.15\newblock Spectral analysis of {Boolean} functions as a graph eigenvalue16problem.17\newblock {\em IEEE Transactions on Computers}, 48(3):345--351, (1999).1819\bibitem{BerCV01}20A.~Bernasconi, B.~Codenotti, and J.~M. VanderKam.21\newblock A characterization of bent functions in terms of strongly regular22graphs.23\newblock {\em IEEE Transactions on Computers}, 50(9):984--985, (2001).2425\bibitem{BorD2008}26J.~Borwein and K.~Devlin.27\newblock {\em The computer as crucible: An introduction to experimental28mathematics}.29\newblock AK Peters/CRC Press, (2008).3031\bibitem{Bos63}32R.~C. Bose.33\newblock Strongly regular graphs, partial geometries and partially balanced34designs.35\newblock {\em Pacific J. Math}, 13(2):389--419, (1963).3637\bibitem{BouFFWW2006}38I.~Bouyukliev, V.~Fack, W.~Willems, and J.~Winne.39\newblock Projective two-weight codes with small parameters and their40corresponding graphs.41\newblock {\em Designs, Codes and Cryptography}, 41(1):59--78, (2006).4243\bibitem{Bra06thesis}44A.~Braeken.45\newblock {\em Cryptographic Properties of Boolean Functions and S-Boxes}.46\newblock {PhD} thesis, Katholieke Universiteit Leuven, Leuven-Heverlee,47Belgium, (2006).4849\bibitem{BroCN89}50A.~Brouwer, A.~Cohen, and A.~Neumaier.51\newblock {\em Distance-Regular Graphs}.52\newblock Ergebnisse der Mathematik und Ihrer Grenzgebiete, 3 Folge / A Series53of Modern Surveys in Mathematics. Springer London, (2011).5455\bibitem{Brov92}56A.~E. Brouwer and C.~A. Van~Eijl.57\newblock On the p-rank of the adjacency matrices of strongly regular graphs.58\newblock {\em Journal of Algebraic Combinatorics}, 1(4):329--346, (1992).5960\bibitem{CalK1986}61R.~Calderbank and W.~M. Kantor.62\newblock The geometry of two-weight codes.63\newblock {\em Bulletin of the London Mathematical Society}, 18(2):97--122,64(1986).6566\bibitem{Cam2003}67P.~J. Cameron.68\newblock Random strongly regular graphs?69\newblock {\em Discrete Mathematics}, 273(1):103--114, (2003).70\newblock EuroComb'01.7172\bibitem{CamVL91}73P.~J. Cameron and J.~H. Van~Lint.74\newblock {\em Designs, graphs, codes and their links}, volume~3.75\newblock Cambridge University Press, (1991).7677\bibitem{Car10boolean}78C.~Carlet.79\newblock Boolean functions for cryptography and error correcting codes.80\newblock In {\em Boolean Models and Methods in Mathematics, Computer Science,81and Engineering}, volume~2, 257--397. Cambridge University Press, (2010).8283\bibitem{CarDPS10self}84C.~Carlet, L.~E. Danielsen, M.~G. Parker, and P.~Sol{\'e}.85\newblock Self-dual bent functions.86\newblock {\em International Journal of Information and Coding Theory},871(4):384--399, (2010).8889\bibitem{CarM2016four}90C.~Carlet and S.~Mesnager.91\newblock Four decades of research on bent functions.92\newblock {\em Designs, Codes and Cryptography}, 78(1):5--50, (2016).9394\bibitem{CheTZ11}95Y.~M. Chee, Y.~Tan, and X.~D. Zhang.96\newblock Strongly regular graphs constructed from p-ary bent functions.97\newblock {\em Journal of Algebraic Combinatorics}, 34(2):251--266, (2011).9899\bibitem{Com80}100J.~D. Comerford.101\newblock Affine and general linear equivalences of {Boolean} functions.102\newblock {\em Information and Control}, 45(2):156--169, (1980).103104\bibitem{CusS2017}105T.~W. Cusick and P.~Stanica.106\newblock {\em Cryptographic Boolean functions and applications}.107\newblock Academic Press, 2nd edition, (2017).108109\bibitem{Del72weights}110P.~Delsarte.111\newblock Weights of linear codes and strongly regular normed spaces.112\newblock {\em Discrete Mathematics}, 3(1-3):47--64, (1972).113114\bibitem{Dil74}115J.~F. Dillon.116\newblock {\em Elementary {Hadamard} Difference Sets}.117\newblock PhD thesis, University of Maryland College Park, Ann Arbor, USA,118(1974).119120\bibitem{DilS87block}121J.~F. Dillon and J.~R. Schatz.122\newblock Block designs with the symmetric difference property.123\newblock In {\em Proceedings of the NSA Mathematical Sciences Meetings},124159--164. US Govt. Printing Office Washington, DC, (1987).125126\bibitem{Din2015}127C.~Ding.128\newblock Linear codes from some 2-designs.129\newblock {\em IEEE Transactions on information theory}, 61(6):3265--3275,130(2015).131132\bibitem{DinMTX2018cyclic}133C.~Ding, S.~Mesnager, C.~Tang, and M.~Xiong.134\newblock Cyclic bent functions and their applications in codes, codebooks,135designs, {MUBs} and sequences.136\newblock {\em arXiv preprint arXiv:1811.07725}, (2018).137138\bibitem{FeuSSW2013}139T.~Feulner, L.~Sok, P.~Sol{\'e}, and A.~Wassermann.140\newblock Towards the classification of self-dual bent functions in eight141variables.142\newblock {\em Designs, Codes and Cryptography}, 68(1):395--406, (2013).143144\bibitem{Har64}145M.~A. Harrison.146\newblock On the classification of {Boolean} functions by the general linear147and affine groups.148\newblock {\em Journal of the Society for Industrial and Applied Mathematics},14912(2):285--299, (1964).150151\bibitem{HoeL94}152C.~Hoede and X.~Li.153\newblock Clique polynomials and independent set polynomials of graphs.154\newblock {\em Discrete Mathematics}, 125(1):219 -- 228, (1994).155156\bibitem{HuaY04}157T.~Huang and K.-H. You.158\newblock Strongly regular graphs associated with bent functions.159\newblock In {\em 7th International Symposium on Parallel Architectures,160Algorithms and Networks, 2004. Proceedings.}, 380--383, May 2004.161162\bibitem{Jac64}163N.~Jacobson.164\newblock {\em Lectures in Abstract Algebra: III. Theory of Fields and Galois165Theory (Graduate Texts in Mathematics)}.166\newblock Van Nostrand, (1964).167168\bibitem{JoyEtAl13Sage}169D.~Joyner, O.~Geil, C.~Thomsen, C.~Munuera, I.~M{\'a}rquez-Corbella,170E.~Mart{\'\i}nez-Moro, M.~Bras-Amor{\'o}s, R.~Jurrius, and R.~Pellikaan.171\newblock Sage: A basic overview for coding theory and cryptography.172\newblock In {\em Algebraic Geometry Modeling in Information Theory}, volume~8173of {\em Series on Coding Theory and Cryptology}, 1--45. World Scientific174Publishing Company, (2013).175176\bibitem{JunK07Bliss}177T.~Junttila and P.~Kaski.178\newblock Engineering an efficient canonical labeling tool for large and sparse179graphs.180\newblock In D.~Applegate, G.~S. Brodal, D.~Panario, and R.~Sedgewick, editors,181{\em Proceedings of the Ninth Workshop on Algorithm Engineering and182Experiments and the Fourth Workshop on Analytic Algorithms and183Combinatorics}, 135--149, New Orleans, LA, (2007). Society for Industrial184and Applied Mathematics.185186\bibitem{JunK11conflict}187T.~Junttila and P.~Kaski.188\newblock Conflict propagation and component recursion for canonical labeling.189\newblock In {\em Theory and Practice of Algorithms in (Computer) Systems},190151--162. Springer, (2011).191192\bibitem{Kan75symplectic}193W.~M. Kantor.194\newblock Symplectic groups, symmetric designs, and line ovals.195\newblock {\em Journal of Algebra}, 33(1):43--58, (1975).196197\bibitem{Kan83exponential}198W.~M. Kantor.199\newblock Exponential numbers of two-weight codes, difference sets and200symmetric designs.201\newblock {\em Discrete Mathematics}, 46(1):95--98, (1983).202203\bibitem{Lan10psf}204P.~Langevin.205\newblock Classification of partial spread functions in eight variables,206(2010).207\newblock \url{http://langevin.univ-tln.fr/project/spread/psp.html}.208209\bibitem{LanH11counting}210P.~Langevin and X.-D. Hou.211\newblock Counting partial spread functions in eight variables.212\newblock {\em IEEE Transactions on Information Theory}, 57(4):2263--2269,213(2011).214215\bibitem{LanL11counting}216P.~Langevin and G.~Leander.217\newblock Counting all bent functions in dimension eight21899270589265934370305785861242880.219\newblock {\em Designs, Codes and Cryptography}, 59(1-3):193--205, (2011).220221\bibitem{LanLM08Kasami}222P.~Langevin, G.~Leander, and G.~McGuire.223\newblock Kasami bent functions are not equivalent to their duals.224\newblock In G.~Mullen, D.~Panario, and I.~Shparlinski, editors, {\em Finite225Fields and Applications: Eighth International Conference on Finite Fields and226Applications, July 9-13, 2007, Melbourne, Australia}, 187--198. American227Mathematical Society, (2008).228229\bibitem{Lem1975matrix}230A.~Lempel.231\newblock Matrix factorization over gf(2) and trace-orthogonal bases of232gf(2\^{}n).233\newblock {\em SIAM Journal on Computing}, 4(2):175--186, (1975).234235\bibitem{Leo18Database}236P.~Leopardi.237\newblock A database of {Cayley} graphs of bent {Boolean} functions.238\newblock In preparation.239240\bibitem{Leo15Twin}241P.~Leopardi.242\newblock Twin bent functions and {Clifford} algebras.243\newblock In {\em Algebraic Design Theory and Hadamard Matrices}, 189--199.244Springer, (2015).245246\bibitem{Leo16GitHub}247P.~Leopardi.248\newblock Boolean-cayley-graphs, (2016).249\newblock \url{https://github.com/penguian/Boolean-Cayley-graphs} GitHub250repository.251252\bibitem{Leo17CoCalc}253P.~Leopardi.254\newblock Boolean-cayley-graphs, (2017).255\newblock \url{http://tinyurl.com/Boolean-Cayley-graphs} CoCalc public folder.256257\bibitem{Leo17Hurwitz}258P.~Leopardi.259\newblock Twin bent functions, strongly regular {Cayley} graphs, and260{Hurwitz-Radon} theory.261\newblock {\em Journal of Algebra Combinatorics Discrete Structures and262Applications}, 4(3):271--280, (2017).263264\bibitem{MacS77}265F.~J. MacWilliams and N.~J.~A. Sloane.266\newblock {\em The theory of error-correcting codes}.267\newblock Elsevier, (1977).268269\bibitem{Mai91}270J.~A. Maiorana.271\newblock A classification of the cosets of the {Reed-Muller} code {R}(1, 6).272\newblock {\em Mathematics of Computation}, 57(195):403--414, (1991).273274\bibitem{McKP13nauty}275B.~D. McKay and A.~Piperno.276\newblock {\em Nauty and Traces user's guide (Version 2.5)}.277\newblock Computer Science Department, Australian National University,278Canberra, Australia, (2013).279280\bibitem{McKP14practical}281B.~D. McKay and A.~Piperno.282\newblock Practical graph isomorphism, {II}.283\newblock {\em Journal of Symbolic Computation}, 60:94--112, (2014).284285\bibitem{MeiS90}286W.~Meier and O.~Staffelbach.287\newblock Nonlinearity criteria for cryptographic functions.288\newblock In J.-J. Quisquater and J.~Vandewalle, editors, {\em Advances in289Cryptology --- EUROCRYPT '89: Workshop on the Theory and Application of290Cryptographic Techniques}, volume 434 of {\em Lecture Notes in Computer291Science}, 549--562, Berlin, Heidelberg, (1990). Springer.292293\bibitem{Mes2016}294S.~Mesnager.295\newblock {\em Bent functions}.296\newblock Springer, (2016).297298\bibitem{Mul54}299D.~E. Muller.300\newblock Application of {Boolean} algebra to switching circuit design and to301error detection.302\newblock {\em Transactions of the IRE Professional Group on Electronic303Computers}, (3):6--12, (1954).304305\bibitem{Neu06bent}306T.~Neumann.307\newblock {\em Bent functions}.308\newblock PhD thesis, University of Kaiserslautern, (2006).309310\bibitem{OlSW1975}311J.~Olsen, R.~Scholtz, and L.~Welch.312\newblock Bent-function sequences.313\newblock {\em IEEE Transactions on Information Theory}, 28(6):858--864,314November 1982.315316\bibitem{PostgreSQL}317{PostgreSQL Global Development Group}.318\newblock {PostgreSQL}, (1996).319\newblock \url{https://www.postgresql.org}.320321\bibitem{Rot76}322O.~S. Rothaus.323\newblock On ``bent'' functions.324\newblock {\em Journal of Combinatorial Theory, Series A}, 20(3):300--305,325(1976).326327\bibitem{Roy08normal}328G.~F. Royle.329\newblock A normal non-cayley-invariant graph for the elementary abelian group330of order 64.331\newblock {\em Journal of the Australian Mathematical Society},33285(03):347--351, (2008).333334\bibitem{Rue1986}335R.~Rueppel.336\newblock {\em Analysis and design of stream ciphers}.337\newblock Communications and control engineering series. Springer, (1986).338339\bibitem{CoCalc}340{SageMath, Inc.}341\newblock {\em CoCalc - Collaborative Calculation in the Cloud}, (2017).342\newblock \url{https://cocalc.com/}.343344\bibitem{Sei79}345J.~J. Seidel.346\newblock Strongly regular graphs.347\newblock In {\em Surveys in combinatorics ({P}roc. {S}eventh {B}ritish348{C}ombinatorial {C}onf., {C}ambridge, 1979)}, volume~38 of {\em London349Mathematical Society Lecture Note Series}, 157--180, Cambridge-New York,350(1979). Cambridge Univ. Press.351352\bibitem{SQLite}353{SQLite Consortium}.354\newblock {SQLite}, (2000).355\newblock \url{http://sqlite.org}.356357\bibitem{Sta07}358P.~Stanica.359\newblock Graph eigenvalues and {Walsh} spectrum of {Boolean} functions.360\newblock {\em Integers: Electronic Journal Of Combinatorial Number Theory},3617(2):A32, (2007).362363\bibitem{Sti07combinatorial}364D.~R. Stinson.365\newblock {\em Combinatorial designs: constructions and analysis}.366\newblock Springer Science \& Business Media, (2007).367368\bibitem{SageMath7517}369{The Sage Developers}.370\newblock {\em {S}ageMath, the {S}age {M}athematics {S}oftware {S}ystem371({V}ersion 7.5)}, (2017).372\newblock \url{http://www.sagemath.org}.373374\bibitem{SageMath8418}375{The Sage Developers}.376\newblock {\em {S}ageMath, the {S}age {M}athematics {S}oftware {S}ystem377({V}ersion 8.4)}, (2018).378\newblock \url{http://www.sagemath.org}.379380\bibitem{Tok15bent}381N.~Tokareva.382\newblock {\em Bent functions: results and applications to cryptography}.383\newblock Academic Press, (2015).384385\bibitem{Ton96uniformly}386V.~D. Tonchev.387\newblock The uniformly packed binary [27, 21, 3] and [35, 29, 3] codes.388\newblock {\em Discrete Mathematics}, 149(1-3):283--288, (1996).389390\bibitem{Ton07codes}391V.~D. Tonchev.392\newblock Codes.393\newblock In C.~Colbourne and J.~Dinitz, editors, {\em Handbook of394combinatorial designs}, chapter VII.1, 677--701. CRC press, second edition,395(2007).396397\end{thebibliography}398399400