Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
22144 views
1
\documentclass[pdf,sprung,slideColor,nocolorBG]{beamer}
2
%
3
%\documentclass[hyperref={pdfpagelabels=false}]{beamer}
4
\mode<presentation>
5
6
\newenvironment{colortheme}[1]{
7
\def\ProvidesPackageRCS $##1${\relax}
8
\renewcommand{\ProcessOptions}{\relax}
9
\makeatletter
10
\input beamercolortheme#1.sty
11
\makeatother
12
}{}
13
14
\let\Tiny=\tiny
15
\usetheme{Adelaide}
16
\usefonttheme[stillsansseriftext]{serif}
17
\setbeamerfont{structure}{series=\bfseries}
18
\setbeamertemplate{frametitle}[default][center]
19
\usepackage[figurename={}]{caption}
20
\usepackage[latin1]{inputenc}
21
%\usepackage{amsmath} %needed for \begin{align}... \end{align} environment
22
\usepackage{amsfonts}
23
\usepackage{amssymb}
24
%\usepackage{amscd}
25
%\usepackage[all]{xy}
26
\usepackage{xcolor}
27
\usepackage{enumerate}
28
%
29
\newcommand{\slidecite}[1]{\tiny{(#1)}\normalsize{}}
30
\newcommand{\smallcite}[1]{\small{(#1)}\normalsize{}}
31
32
\newcommand{\mb}[1]{\mathbb{#1}}
33
\newcommand{\mf}[1]{\mathbf{#1}}
34
\newcommand{\Emph}[1]{\emph{\textcolor{blue}{#1}}}
35
36
\newcommand{\abs}[1]{\left| #1 \right|}
37
\newcommand{\norm}[1]{\left\| #1 \right\|}
38
\newcommand{\To}{\rightarrow}
39
40
\newcommand{\Cay}[1]{\operatorname{Cay}\left(#1\right)}
41
\newcommand{\Clique}[1]{\omega\left(#1\right)}
42
\newcommand{\dual}[1]{\widetilde{#1}}
43
\newcommand{\support}[1]{\operatorname{supp}\left(#1\right)}
44
\newcommand{\weight}[1]{\operatorname{wt}\left(#1\right)}
45
\newcommand{\weightclass}[1]{\operatorname{wc}\left(#1\right)}
46
47
\newcommand{\G}{\mb{G}}
48
\newcommand{\R}{\mb{R}}
49
\newcommand{\Z}{\mb{Z}}
50
\newtheorem{Def}{Definition}
51
\newtheorem{Conjecture}{Conjecture}
52
\newtheorem{Question}{Question}
53
\newtheorem{Proposition}{Proposition}
54
55
\title{Classifying bent functions by their Cayley graphs, using Sage}
56
\author{Paul Leopardi}
57
58
\date{For RMIT University
59
\\
60
Melbourne
61
\\
62
28 April 2017}
63
64
\institute{University of Melbourne
65
\\
66
Australian Government - Bureau of Meteorology}
67
\titlegraphic{
68
%\includegraphics[angle=0,width=10mm]{../../common/beamer-anu-colourlogo.png}
69
%\includegraphics[angle=0,width=20mm]{../../common/carma_logo.jpg}
70
}
71
\begin{document}
72
73
\frame{\titlepage}
74
\begin{frame}
75
\frametitle{Acknowledgements}
76
\begin{center}
77
Nathan Clisby,
78
Robert Craigen,
79
Joanne Hall,
80
David Joyner, Philippe Langevin, William Martin,
81
Padraig {\'O} Cath{\'a}in,
82
Judy-anne Osborn, Dima Pasechnik and William Stein.
83
84
~
85
86
kodlu on MathOverflow.
87
88
~
89
90
Matthew Leingang for Beamer colour themes.
91
92
~
93
94
Australian National University. University of Newcastle, Australia. University of Melbourne.
95
96
~
97
98
Australian Government - Bureau of Meteorology.
99
100
~
101
102
SageMath, Bliss, Nauty.
103
\end{center}
104
\end{frame}
105
106
\begin{frame}
107
\frametitle{Overview}
108
%\begin{center}
109
\begin{itemize}
110
\item
111
Key concepts.
112
113
~
114
115
\item
116
Equivalence.
117
118
~
119
120
\item
121
Some results.
122
123
~
124
125
\item
126
Observations for small dimensions.
127
128
~
129
130
\item
131
Some questions.
132
133
~
134
135
\item
136
SageMath code.
137
\end{itemize}
138
139
%\end{center}
140
\end{frame}
141
142
\section{Key concepts}
143
\begin{colortheme}{seagull}
144
\begin{frame}
145
\frametitle{Bent functions}
146
% Bent functions can be defined in a number of equivalent ways.
147
% The definition used here involves the Walsh Hadamard Transform.
148
\begin{Def}
149
\label{def-Walsh-Hadamard-transform}
150
The Walsh Hadamard transform of
151
a Boolean function $f : \Z_2^{2m} \To \Z_2$ is
152
\begin{align*}
153
W_f(x)
154
&:=
155
\sum_{y \in \Z_2^{2m}} (-1)^{f(y) + \langle x, y \rangle}
156
\end{align*}
157
\end{Def}
158
159
\begin{Def}
160
\label{def-Bent-function}
161
A Boolean function $f : \Z_2^{2m} \To \Z_2$ is \Emph{bent}
162
if and only if its Walsh Hada\-mard transform has constant absolute value $2^{m}$.
163
% \cite[p. 74]{Dil74}
164
% \cite[p. 300]{Rot76}.
165
\end{Def}
166
\slidecite{Dillon 1974; Rothaus 1976}
167
\end{frame}
168
\begin{frame}
169
\frametitle{Dual bent functions}
170
171
\begin{Def}
172
\label{def-dual-Bent-function}
173
For a bent function $f : \Z_2^{2m} \To \Z_2$, the function $\dual{f}$, defined by
174
\begin{align*}
175
(-1)^{\dual{f}(x)} &:= 2^{-m} W_f(x)
176
\end{align*}
177
is called the \Emph{dual} of $f$.
178
\end{Def}
179
180
~
181
182
The function $\dual{f}$ is also a bent function on $\Z_2^{2m}$.
183
184
~
185
186
\slidecite{Dillon 1974; Rothaus 1976; Tokareva 2011}
187
\end{frame}
188
189
\begin{colortheme}{jubata}
190
\begin{frame}
191
\frametitle{Weights and weight classes}
192
\begin{Def}
193
The \Emph{weight} of a binary function is the cardinality of its \Emph{support}.
194
For $f$ on $\Z_2^{2m}$
195
\begin{align*}
196
\support{f} &:= \{x \in \Z_2^{2m} \mid f(x)=1 \}.
197
\end{align*}
198
199
A bent function $f$ on $\Z_2^{2m}$ has weight
200
\begin{align*}
201
\weight{f} &= 2^{2 m - 1} - 2^{m-1} \quad (\text{weight class~} \weightclass{f}=0), \text{~or}
202
\\
203
\weight{f} &= 2^{2 m - 1} + 2^{m-1} \quad (\text{weight class~} \weightclass{f}=1).
204
\end{align*}
205
% If $f(0)=0$ then $\weightclass{\Cay{f}} := \weightclass{f}$.
206
\end{Def}
207
\end{frame}
208
\end{colortheme}
209
210
\begin{frame}
211
\frametitle{The Cayley graph of a Boolean function}
212
%\begin{center}
213
The \Emph{Cayley graph} $\Cay{f}$ of a Boolean function
214
215
~
216
217
\begin{align*}
218
%
219
f : \Z_2^n \To \Z_2 \quad \text{where} \quad f(0) = 0
220
%
221
\end{align*}
222
223
~
224
225
is
226
an undirected graph with
227
228
\begin{align*}
229
V(\Cay{f}) &:= \Z_2^n, \quad (x,y) \in E(\Cay{f}) \Leftrightarrow f(x+y) = 1.
230
\end{align*}
231
232
~
233
234
\slidecite{Bernasconi and Codenotti 1999}
235
\end{frame}
236
237
\begin{frame}
238
\frametitle{Strongly regular graphs}
239
%\begin{center}
240
A simple graph $\Gamma$ of order $v$ is \Emph{strongly regular} with parameters
241
$(v,k,\lambda,\mu)$ if
242
243
~
244
245
\begin{itemize}
246
\item
247
each vertex has degree $k,$
248
249
~
250
\item
251
each adjacent pair of vertices has $\lambda$ common neighbours, and
252
253
~
254
\item
255
each nonadjacent pair of vertices has $\mu$ common neighbours.
256
\end{itemize}
257
258
~
259
260
\slidecite{Brouwer, Cohen and Neumaier 1989}
261
262
%\end{center}
263
\end{frame}
264
265
\begin{frame}
266
\frametitle{Bent functions and strongly regular graphs}
267
268
\begin{Proposition}
269
\smallcite{Bernasconi and Codenotti 1999}
270
271
The Cayley graph $\Cay{f}$ of a bent function $f$ on $\Z_2^{2m}$
272
273
with $f(0)=0$ is a strongly regular graph with $\lambda = \mu.$
274
\end{Proposition}
275
276
The parameters of $\Cay{f}$ are
277
\begin{align*}
278
(v,k,\lambda) = &(4^m, 2^{2 m - 1} - 2^{m-1}, 2^{2 m - 2} - 2^{m-1})
279
\\
280
\text{or} \quad &(4^m, 2^{2 m - 1} + 2^{m-1}, 2^{2 m - 2} + 2^{m-1}).
281
\end{align*}
282
283
~
284
285
\slidecite{Menon 1962; Dillon 1974; Bernasconi and Codenotti 1999}
286
%\end{center}
287
\end{frame}
288
\end{colortheme}
289
\begin{colortheme}{seagull}
290
\begin{frame}
291
\frametitle{Projective two-weight binary codes}
292
293
\begin{Def}
294
A \Emph{two-weight binary code} with parameters $[n,k,d]$ is a $k$ dimensional subspace of $\Z_2^n$
295
with
296
minimum Hamming distance $d$, such that the set of Hamming weights of the non-zero vectors has size
297
2.
298
299
~
300
301
``A \Emph{generator matrix} $G$ of a linear code $[n, k]$ code $C$ is any matrix
302
of rank $k$ (over $\Z_2$) with rows from $C.$''
303
304
~
305
306
``A linear $[n, k]$ code is called \Emph{projective} if no two columns of a generator matrix
307
$G$ are linearly dependent, i.e., if the columns of $G$ are pairwise different points in a
308
projective $(k-1)$-dimensional space.''
309
In the case of $\Z_2$, no two columns are equal.
310
311
~
312
313
\end{Def}
314
315
\slidecite{Tonchev 1996; Bouyukliev, Fack, Willems and Winne 2006}
316
317
\end{frame}
318
\end{colortheme}
319
320
\begin{colortheme}{seagull}
321
\begin{frame}
322
\frametitle{From bent function to linear code (1)}
323
\begin{Def}
324
325
\smallcite{Carlet 2007; Ding 2015, Corollary 10}
326
327
For a bent function $f : \Z_2^{2m} \To \Z_2$,
328
define the linear code $C(f)$ by the generator matrix
329
\begin{align*}
330
M C(f) &\in \Z_2^{4^m \times \weight{f}},
331
\\
332
M C(f)_{x,y} &:= \langle x, \support{f}(y) \rangle,
333
\end{align*}
334
with $x$ in lexicographic order of $\Z_2^{2m}$
335
and $\support{f}(y)$ in lexicographic order of $\support{f}$.
336
337
The $4^m$ words of the code $C(f)$ are the rows of the generator matrix $M C(f)$.
338
\end{Def}
339
340
\slidecite{Carlet 2007; Ding 2015, Corollary 10}
341
342
\end{frame}
343
\begin{frame}
344
\frametitle{From bent function to linear code (2)}
345
\begin{Proposition}
346
\smallcite{Carlet 2007, Prop. 20; Ding 2015, Corollary 10}
347
348
For a bent function $f : \Z_2^{2m} \To \Z_2$, the linear code $C(f)$
349
is a projective two-weight code.
350
351
~
352
353
The possible weights of non-zero code words are:
354
\begin{align*}
355
\begin{cases}
356
2^{2m-2}, 2^{2m-2} - 2^{m-1} & \text{if~} \weightclass{f}=0.
357
\\
358
2^{2m-2}, 2^{2m-2} + 2^{m-1} & \text{if~} \weightclass{f}=1.
359
\end{cases}
360
\end{align*}
361
362
\end{Proposition}
363
364
\slidecite{Carlet 2007, Prop. 20; Ding 2015, Corollary 10}
365
366
\end{frame}
367
\begin{frame}
368
\frametitle{From linear code to strongly regular graph}
369
\begin{Def}
370
\label{R-f-def}
371
Given $f : \Z_2^{2m} \To \Z_2$, form the linear code $C(f)$.
372
373
The graph $R(f)$ is defined as:
374
375
Vertices of $R(f)$ are code words of $C(f)$.
376
377
For $v,w \in C(f)$, edge $(u,v) \in R(f)$ if and only if
378
\begin{align*}
379
\begin{cases}
380
\weight{u+v} = 2^{2m-2} - 2^{m-1} & (\text{if~}\weightclass{f}=0).
381
\\
382
\weight{u+v} = 2^{2m-2} + 2^{m-1} & (\text{if~}\weightclass{f}=1).
383
\end{cases}
384
\end{align*}
385
386
\end{Def}
387
Since $C(f)$ is a projective two-weight code,
388
$R(f)$ is a strongly regular graph.
389
390
\slidecite{Delsarte 1972, Theorem 2}
391
\end{frame}
392
\begin{frame}
393
\frametitle{The two block designs of a bent function}
394
395
The first block design of a bent function $f$ is obtained by interpreting
396
the adjacency matrix of $\Cay{f}$ as the incidence matrix of a block design.
397
In this case we do not need $f(0)=0$.
398
399
~
400
\begin{Def}
401
The second block design of a bent function $f$ is defined by the incidence matrix
402
$D(f)$ where
403
\begin{align*}
404
D(f)_{c,x} &:= f(x) + \langle c, x \rangle + \dual{f}(c).
405
\end{align*}
406
This is a symmetric block design with the \Emph{symmetric difference property},
407
called the \Emph{SDP design} of $f$.
408
\end{Def}
409
410
~
411
412
\slidecite{Kantor 1983; Dillon and Schatz 1987; Neumann 2006}
413
\end{frame}
414
\end{colortheme}
415
416
\section{Equivalence}
417
418
\begin{colortheme}{seagull}
419
\begin{frame}
420
\frametitle{Extended affine equivalence}
421
422
\begin{Def}
423
For bent functions $f,g : \Z_2^{2m} \To \Z_2$,
424
425
$f$ is \Emph{extended affine equivalent} to $g$ if and only if
426
\begin{align*}
427
g(x) &= f(A x + b) + \langle c, x \rangle + \delta
428
\end{align*}
429
for some $A \in GL(2m,2)$, $b, c \in \Z_2^{2m}$, $\delta \in \Z_2$.
430
\end{Def}
431
~
432
433
\slidecite{Tokareva 2014}
434
\end{frame}
435
\end{colortheme}
436
437
\begin{colortheme}{jubata}
438
\begin{frame}
439
\frametitle{General linear equivalence}
440
441
\begin{Def}
442
For bent functions $f,g : \Z_2^{2m} \To \Z_2$,
443
$f$ is \Emph{general linear equivalent} to $g$ if and only if
444
\begin{align*}
445
g(x) &= f(A x)
446
\end{align*}
447
for some $A \in GL(2m,2)$.
448
\end{Def}
449
\end{frame}
450
\begin{frame}
451
\frametitle{Extended translation equivalence}
452
453
\begin{Def}
454
For bent functions $f,g : \Z_2^{2m} \To \Z_2$,
455
456
$f$ is \Emph{extended translation equivalent} to $g$ if and only if
457
\begin{align*}
458
g(x) &= f(x + b) + \langle c, x \rangle + \delta
459
\end{align*}
460
for $b, c \in \Z_2^{2m}$, $\delta \in \Z_2$.
461
\end{Def}
462
\end{frame}
463
\end{colortheme}
464
465
\begin{colortheme}{jubata}
466
\begin{frame}
467
\frametitle{Cayley equivalence}
468
\begin{Def}
469
%
470
For $f, g : \Z_2^{2m} \To \Z_2$, with both $f$ and $g$ bent,
471
472
we call $f$ and $g$ \Emph{Cayley equivalent},
473
and write $f \equiv g$,
474
475
if and only if $f(0)=g(0)=0$ and $\Cay{f} \equiv \Cay{g}$ as graphs.
476
477
~
478
479
Equivalently, $f \equiv g$ if and only if $f(0)=g(0)=0$ and
480
481
there exists a bijection $\pi : \Z_2^{2m} \To \Z_2^{2m}$ such that
482
\begin{align*}
483
g(x+y) &= f \big(\pi(x)+\pi(y)\big) \quad \text{for all~} x,y \in \Z_2^{2m}.
484
\end{align*}
485
\end{Def}
486
\end{frame}
487
\begin{frame}
488
\frametitle{Extended Cayley equivalence}
489
\begin{Def}
490
For $f, g : \Z_2^{2m} \To \Z_2$, with both $f$ and $g$ bent,
491
492
if there exist $\delta, \epsilon \in \{0,1\}$ such that $f + \delta \equiv g + \epsilon$,
493
494
we call $f$ and $g$ \Emph{extended Cayley (EC) equivalent} and write $f \cong g$.
495
\end{Def}
496
Extended Cayley equivalence is an equivalence relation on the set of all bent functions on $\Z_2^{2m}$.
497
\end{frame}
498
\section{Some results}
499
500
\begin{frame}
501
\frametitle{General linear equivalence \\ implies Cayley equivalence}
502
503
\begin{Theorem}
504
If $f$ is bent with $f(0)=0$ and $g(x) := f(A x)$ where $A \in GL(2m,2)$,
505
then $g$ is bent with $g(0)=0$ and $f \equiv g$.
506
\end{Theorem}
507
\begin{proof}
508
\begin{align*}
509
g(x+y) &= f\big(A(x+y)\big) = f(A x + A y)\quad \text{for all~} x,y \in \Z_2^{2m}.
510
\end{align*}
511
\end{proof}
512
513
\end{frame}
514
515
\begin{frame}
516
\frametitle{Extended affine, extended translation, and extended Cayley equivalence (1)}
517
518
\begin{Theorem}
519
For $A \in GL(2m,2)$, $b, c \in \Z_2^{2m}$, $\delta \in \Z_2$,
520
$f : \Z_2^{2m} \To \Z_2$,
521
522
the function
523
\begin{align*}
524
h(x) &:= f(A x + b) + \langle c, x \rangle + \delta
525
\intertext{can be expressed as $h(x) = g(A x)$ where}
526
g(x) &:= f(x+b) + \langle (A^{-1})^T c, x \rangle + \delta,
527
\end{align*}
528
and therefore if $f$ is bent then $h \cong g$.
529
\end{Theorem}
530
\end{frame}
531
532
\begin{frame}
533
\frametitle{Extended affine, extended translation, and extended Cayley equivalence (2)}
534
535
Therefore, to determine the extended Cayley equivalence classes within the extended affine equivalence class of
536
a bent function $f : \Z_2^{2m} \To \Z_2$, for which $f(0)=0$, we need only examine
537
the extended translation equivalent functions of the form
538
\begin{align*}
539
f(x+b) + \langle c, x \rangle + f(b),
540
\end{align*}
541
for each $b, c \in \Z_2^{2m}$.
542
\end{frame}
543
\begin{frame}
544
\frametitle{Quadratic bent functions have two \\ extended Cayley classes}
545
\begin{Theorem}
546
For each $m>0$, the extended affine equivalence class of quadratic bent functions
547
$q : \Z_2^{2m} \To \Z_2$ contains exactly two extended Cayley equivalence classes,
548
corresponding to the two possible weight classes of $x \mapsto q(x+b) + \langle c, x \rangle + q(b)$.
549
\end{Theorem}
550
551
\end{frame}
552
%\end{colortheme}
553
554
%\begin{colortheme}{jubata}
555
\begin{frame}
556
\frametitle{The strongly regular graph $R(f)$ is \\ the Cayley graph of the dual}
557
558
\begin{Theorem}
559
For $f : \Z_2^{2m} \To \Z_2$, with $f(0)=0$,
560
\begin{align*}
561
R(f) &\equiv \Cay{\dual{f} + \weightclass{f}}.
562
\end{align*}
563
\end{Theorem}
564
565
\end{frame}
566
\begin{frame}
567
\frametitle{The weight class matrix is \\ the SDP design matrix}
568
\begin{Theorem}
569
For every bent function $f$, the \Emph{weight class matrix} of the ET class of $f$
570
equals the incidence matrix of the SDP design of $f$.
571
572
~
573
574
Specifically,
575
\begin{align*}
576
\weightclass{\Cay{x \mapsto f(x+b) + \langle c, x \rangle + f(b)}}
577
&=
578
f(b) + \langle c, b \rangle + \dual{f}(c)
579
\\
580
&=
581
D(f)_{c,b}.
582
\end{align*}
583
584
\end{Theorem}
585
586
\end{frame}
587
\end{colortheme}
588
\section{Observations}
589
\begin{colortheme}{jubata}
590
\begin{frame}
591
\frametitle{For 2 dimensions: classes}
592
593
One extended affine class, containing the extended translation class $[f_{2,1}]$,
594
where $f_{2,1}(x) := x_0 x_1$ is self dual.
595
596
~
597
598
Two extended Cayley classes:
599
\begin{align*}
600
\begin{array}{|cccl|}
601
\hline
602
\text{Class} &
603
\text{Parameters} &
604
\text{2-rank} &
605
\text{Clique polynomial}
606
\\
607
\hline
608
1 &
609
(4, 1, 0, 0) & 4 &
610
2t^{2} + 4t + 1
611
\\
612
2 &
613
K_4 & 4 &
614
t^{4} + 4t^{3} + 6t^{2} + 4t + 1
615
\\
616
\hline
617
\end{array}
618
\end{align*}
619
620
\end{frame}
621
\begin{frame}
622
\frametitle{For ET class $[f_{2,1}]$: matrices}
623
\begin{figure}
624
\centering
625
\begin{minipage}{.48\textwidth}
626
\centering
627
\includegraphics[width=.9\linewidth]{../matrix_plot/re2_1_weight_class_matrix.png}
628
\captionof{figure}{$[f_{2,1}]$: weight classes}
629
\label{fig:c2_1_weight_class_matrix}
630
\end{minipage}%
631
\begin{minipage}{.48\textwidth}
632
\centering
633
\includegraphics[width=.9\linewidth]{../matrix_plot/re2_1_bent_cayley_graph_index_matrix.png}
634
\captionof{figure}{$[f_{2,1}]$: extended Cayley classes}
635
\label{fig:c2_1_bent_cayley_graph_index_matrix}
636
\end{minipage}
637
\end{figure}
638
\end{frame}
639
\begin{frame}
640
\frametitle{For 4 dimensions: classes}
641
642
One extended affine class, containing the extended translation class $[f_{4,1}]$, where
643
$f_{4,1}(x) := x_0 x_1 + x_2 x_3$ is self dual.
644
645
~
646
647
Two extended Cayley classes:
648
\begin{align*}
649
\begin{array}{|cccl|}
650
\hline
651
\text{Class} &
652
\text{Parameters} &
653
\text{2-rank} &
654
\text{Clique polynomial}
655
\\
656
\hline
657
1 &
658
(16, 6, 2, 2) &
659
6 &
660
8t^{4} + 32t^{3} + 48t^{2} + 16t + 1
661
\\
662
2 &
663
(16, 10, 6, 6) &
664
6 &
665
\begin{array}{l}
666
16t^{5} + 120t^{4} + 160t^{3} +
667
\\
668
80t^{2} + 16t + 1
669
\end{array}
670
\\
671
\hline
672
\end{array}
673
\end{align*}
674
\end{frame}
675
\begin{frame}
676
\frametitle{For ET class $[f_{4,1}]$: matrices}
677
\begin{figure}
678
\centering
679
\begin{minipage}{.48\textwidth}
680
\centering
681
\includegraphics[width=.9\linewidth]{../matrix_plot/re4_1_weight_class_matrix.png}
682
\captionof{figure}{$[f_{4,1}]$: weight classes}
683
\label{fig:c4_1_weight_class_matrix}
684
\end{minipage}%
685
\begin{minipage}{.48\textwidth}
686
\centering
687
\includegraphics[width=.9\linewidth]{../matrix_plot/re4_1_bent_cayley_graph_index_matrix.png}
688
\captionof{figure}{$[f_{4,1}]$: extended Cayley classes}
689
\label{fig:c4_1_bent_cayley_graph_index_matrix}
690
\end{minipage}
691
\end{figure}
692
\end{frame}
693
\begin{frame}
694
\frametitle{For 6 dimensions: ET classes}
695
696
Four extended affine classes, containing the following extended translation classes:
697
698
\begin{align*}
699
\def\arraystretch{1.2}
700
\begin{array}{|cl|}
701
\hline
702
\text{Class} &
703
\text{Representative}
704
\\
705
\hline
706
\,[f_{6,1}] & f_{6,1} :=
707
\begin{array}{l}
708
x_{0} x_{1} + x_{2} x_{3} + x_{4} x_{5}
709
\end{array}
710
\\
711
\,[f_{6,2}] & f_{6,2} :=
712
\begin{array}{l}
713
x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5}
714
\end{array}
715
\\
716
\,[f_{6,3}] & f_{6,3} :=
717
\begin{array}{l}
718
x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5}
719
\\
720
+\, x_{2} x_{4} + x_{3} x_{4}
721
\end{array}
722
\\
723
\,[f_{6,4}] & f_{6,4} :=
724
\begin{array}{l}
725
x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}
726
\\
727
+\, x_{2} x_{3} + x_{2} x_{4} + x_{2} x_{5} + x_{3} x_{4} + x_{3} x_{5}
728
\end{array}
729
\\
730
\hline
731
\end{array}
732
\end{align*}
733
\end{frame}
734
\begin{frame}
735
\frametitle{For ET class $[f_{6,1}]$: EC classes}
736
737
Bent function
738
$f_{6,1}(x) = x_0 x_1 + x_2 x_3 + x_4 x_5$ is self dual.
739
740
~
741
742
Two extended Cayley classes corresponding to Tonchev's projective two-weight codes:
743
\begin{align*}
744
\def\arraystretch{1.2}
745
\begin{array}{|ccl|}
746
\hline
747
\text{Class} &
748
\text{Parameters} & \text{Reference}
749
\\
750
\hline
751
0 & [35,6,16] & \text{Table 1.156 1, 2 (complement)}
752
\\
753
1 & [27,6,12] & \text{Table 1.155 1 }
754
\\
755
\hline
756
\end{array}
757
\end{align*}
758
759
Graph for class 0 is also isomorphic to the complement of Royle's $(64,35,18,20)$ strongly regular
760
graph $X$.
761
762
\slidecite{Tonchev 1996, 2006; Royle 2008}
763
\end{frame}
764
\begin{frame}
765
\frametitle{For ET class $[f_{6,1}]$: matrices}
766
\begin{figure}
767
\centering
768
\begin{minipage}{.48\textwidth}
769
\centering
770
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_1_weight_class_matrix.png}
771
\captionof{figure}{$[f_{6,1}]$: weight classes}
772
\label{fig:6_1_weight_class_matrix}
773
\end{minipage}%
774
\begin{minipage}{.48\textwidth}
775
\centering
776
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_1_bent_cayley_graph_index_matrix.png}
777
\captionof{figure}{$[f_{6,1}]$: 2 extended Cayley classes}
778
\label{fig:6_1_bent_cayley_graph_index_matrix}
779
\end{minipage}
780
\end{figure}
781
\end{frame}
782
\begin{frame}
783
\frametitle{For ET class $[f_{6,2}]$: EC classes}
784
785
Bent function
786
$f_{6,2}(x) = x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5}$.
787
788
~
789
790
Three extended Cayley classes corresponding to Tonchev's projective two-weight codes:
791
\begin{align*}
792
\def\arraystretch{1.2}
793
\begin{array}{|ccl|}
794
\hline
795
\text{Class} &
796
\text{Parameters} & \text{Reference}
797
\\
798
\hline
799
0 & [35,6,16] & \text{Table 1.156 1, 2 (complement)}
800
\\
801
1 & [35,6,16] & \text{Table 1.156 3 (complement)}
802
\\
803
2 & [27,6,12] & \text{Table 1.155 2 }
804
\\
805
\hline
806
\end{array}
807
\end{align*}
808
809
Graph for class 0 is also isomorphic to that of $[f_{6,1}]$ class 0.
810
811
\slidecite{Tonchev 1996, 2006}
812
\end{frame}
813
\begin{frame}
814
\frametitle{For ET class $[f_{6,2}]$: matrices}
815
\begin{figure}
816
\centering
817
\begin{minipage}{.48\textwidth}
818
\centering
819
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_2_weight_class_matrix.png}
820
\captionof{figure}{$[f_{6,2}]$: weight classes}
821
\label{fig:6_2_weight_class_matrix}
822
\end{minipage}%
823
\begin{minipage}{.48\textwidth}
824
\centering
825
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_2_bent_cayley_graph_index_matrix.png}
826
\captionof{figure}{$[f_{6,2}]$: 3 extended Cayley classes}
827
\label{fig:6_2_bent_cayley_graph_index_matrix}
828
\end{minipage}
829
\end{figure}
830
\end{frame}
831
\begin{frame}
832
\frametitle{For ET class $[f_{6,3}]$: EC classes}
833
834
Bent function
835
\begin{align*}
836
f_{6,3}(x) &= x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{3} + x_{1} x_{3} x_{4}
837
\\
838
&+ x_{1} x_{5} + x_{2} x_{4} + x_{3} x_{4}.
839
\end{align*}
840
841
Four extended Cayley classes corresponding to Tonchev's projective two-weight codes:
842
\begin{align*}
843
\def\arraystretch{1.2}
844
\begin{array}{|ccl|}
845
\hline
846
\text{Class} &
847
\text{Parameters} & \text{Reference}
848
\\
849
\hline
850
0 & [35,6,16] & \text{Table 1.156 4 (complement)}
851
\\
852
1 & [27,6,12] & \text{Table 1.155 3 }
853
\\
854
2 & [35,6,16] & \text{Table 1.156 5 (complement)}
855
\\
856
3 & [27,6,12] & \text{Table 1.155 4 }
857
\\
858
\hline
859
\end{array}
860
\end{align*}
861
862
\slidecite{Tonchev 1996, 2006}
863
\end{frame}
864
\begin{frame}
865
\frametitle{For ET class $[f_{6,3}]$: matrices}
866
\begin{figure}
867
\centering
868
\begin{minipage}{.48\textwidth}
869
\centering
870
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_3_weight_class_matrix.png}
871
\captionof{figure}{$[f_{6,3}]$: weight classes}
872
\label{fig:6_3_weight_class_matrix}
873
\end{minipage}%
874
\begin{minipage}{.48\textwidth}
875
\centering
876
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_3_bent_cayley_graph_index_matrix.png}
877
\captionof{figure}{$[f_{6,3}]$: 4 extended Cayley classes}
878
\label{fig:6_3_bent_cayley_graph_index_matrix}
879
\end{minipage}
880
\end{figure}
881
\end{frame}
882
\begin{frame}
883
\frametitle{For ET class $[f_{6,4}]$: EC classes}
884
885
Bent function
886
\begin{align*}
887
f_{6,4}(x) &= x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}
888
\\
889
&+ x_{2} x_{3} + x_{2} x_{4} + x_{2} x_{5} + x_{3} x_{4} + x_{3} x_{5}.
890
\end{align*}
891
892
Three extended Cayley classes corresponding to Tonchev's projective two-weight codes:
893
\begin{align*}
894
\def\arraystretch{1.2}
895
\begin{array}{|ccl|}
896
\hline
897
\text{Class} &
898
\text{Parameters} & \text{Reference}
899
\\
900
\hline
901
0 & [35,6,16] & \text{Table 1.156 7 (complement)}
902
\\
903
1 & [35,6,16] & \text{Table 1.156 6 (complement)}
904
\\
905
2 & [27,6,12] & \text{Table 1.155 5 }
906
\\
907
\hline
908
\end{array}
909
\end{align*}
910
911
\slidecite{Tonchev 1996, 2006}
912
\end{frame}
913
\begin{frame}
914
\frametitle{For ET class $[f_{6,4}]$: matrices}
915
\begin{figure}
916
\centering
917
\begin{minipage}{.48\textwidth}
918
\centering
919
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_4_weight_class_matrix.png}
920
\captionof{figure}{$[f_{6,4}]$: weight classes}
921
\label{fig:6_4_weight_class_matrix}
922
\end{minipage}%
923
\begin{minipage}{.48\textwidth}
924
\centering
925
\includegraphics[width=.9\linewidth]{../matrix_plot/re6_4_bent_cayley_graph_index_matrix.png}
926
\captionof{figure}{$[f_{6,4}]$: 3 extended Cayley classes}
927
\label{fig:6_4_bent_cayley_graph_index_matrix}
928
\end{minipage}
929
\end{figure}
930
\end{frame}
931
\begin{colortheme}{seagull}
932
\begin{frame}
933
\frametitle{For 8 dimensions: \\ number of bent functions and EA classes}
934
935
According to Langevin and Leander (2011)
936
there are $99270589265934370305785861242880 \approx 2^{106}$ bent functions in dimension 8.
937
938
~
939
940
The number of EA classes has not yet been published, let alone a list of representatives.
941
942
\slidecite{Langevin and Leander 2011}
943
\end{frame}
944
\end{colortheme}
945
\begin{frame}
946
\frametitle{For 8 dimensions, up to degree 3: \\ extended translation classes}
947
948
Ten extended affine classes,
949
950
containing the following extended translation classes:
951
952
\tiny{}
953
\begin{align*}
954
\def\arraystretch{1.2}
955
\begin{array}{|cl|}
956
\hline
957
\text{Class} &
958
\text{Representative}
959
\\
960
\hline
961
\,[f_{ 8 , 1 }] & f_{ 8 , 1 } :=
962
\begin{array}{l}
963
x_{0} x_{1} + x_{2} x_{3} + x_{4} x_{5} + x_{6} x_{7}
964
\end{array}
965
\\
966
\,[f_{ 8 , 2 }] & f_{ 8 , 2 } :=
967
\begin{array}{l}
968
x_{0} x_{1} x_{2} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{5} + x_{6} x_{7}
969
\end{array}
970
\\
971
\,[f_{ 8 , 3 }] & f_{ 8 , 3 } :=
972
\begin{array}{l}
973
x_{0} x_{1} x_{2} + x_{0} x_{6} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} + x_{4} x_{7}
974
\end{array}
975
\\
976
\,[f_{ 8 , 4 }] & f_{ 8 , 4 } :=
977
\begin{array}{l}
978
x_{0} x_{1} x_{2} + x_{0} x_{2} + x_{0} x_{4} + x_{1} x_{3} x_{4} + x_{1} x_{5} + x_{2} x_{3} + x_{6} x_{7}
979
\end{array}
980
\\
981
\,[f_{ 8 , 5 }] & f_{ 8 , 5 } :=
982
\begin{array}{l}
983
x_{0} x_{1} x_{2} + x_{0} x_{6} + x_{1} x_{3} x_{4} + x_{1} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{3} x_{7}
984
\end{array}
985
\\
986
\,[f_{ 8 , 6 }] & f_{ 8 , 6 } :=
987
\begin{array}{l}
988
x_{0} x_{1} x_{2} + x_{0} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{5} x_{7}
989
\end{array}
990
\\
991
\,[f_{ 8 , 7 }] & f_{ 8 , 7 } :=
992
\begin{array}{l}
993
x_{0} x_{1} x_{2} + x_{0} x_{1} + x_{0} x_{2} + x_{0} x_{3} + x_{1} x_{3} x_{4} + x_{1} x_{4} + x_{1} x_{5} + x_{2} x_{3} x_{5}
994
\\
995
+\, x_{2} x_{4} + x_{6} x_{7}
996
\end{array}
997
\\
998
\,[f_{ 8 , 8 }] & f_{ 8 , 8 } :=
999
\begin{array}{l}
1000
x_{0} x_{1} x_{2} + x_{0} x_{5} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4} + x_{3} x_{7}
1001
\end{array}
1002
\\
1003
\,[f_{ 8 , 9 }] & f_{ 8 , 9 } :=
1004
\begin{array}{l}
1005
x_{0} x_{1} x_{6} + x_{0} x_{3} + x_{1} x_{4} + x_{2} x_{3} x_{6} + x_{2} x_{5} + x_{3} x_{4} + x_{4} x_{5} x_{6} + x_{6} x_{7}
1006
\end{array}
1007
\\
1008
\,[f_{ 8 , 10 }] & f_{ 8 , 10 } :=
1009
\begin{array}{l}
1010
x_{0} x_{1} x_{2} + x_{0} x_{3} x_{6} + x_{0} x_{4} + x_{0} x_{5} + x_{1} x_{3} x_{4} + x_{1} x_{6} + x_{2} x_{3} x_{5} + x_{2} x_{4}
1011
\\
1012
+\, x_{3} x_{7}
1013
\end{array}
1014
\\
1015
\hline
1016
\end{array}
1017
\end{align*}
1018
\normalsize{}
1019
\end{frame}
1020
\begin{frame}
1021
\frametitle{For ET class $[f_{8,1}]$: matrices}
1022
\begin{figure}
1023
\centering
1024
\begin{minipage}{.48\textwidth}
1025
\centering
1026
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_1_weight_class_matrix.png}
1027
\captionof{figure}{$[f_{8,1}]$: weight classes}
1028
\label{fig:8_1_weight_class_matrix}
1029
\end{minipage}%
1030
\begin{minipage}{.48\textwidth}
1031
\centering
1032
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_1_bent_cayley_graph_index_matrix.png}
1033
\captionof{figure}{$[f_{8,1}]$: 2 extended Cayley classes}
1034
\label{fig:8_1_bent_cayley_graph_index_matrix}
1035
\end{minipage}
1036
\end{figure}
1037
~
1038
\end{frame}
1039
\begin{frame}
1040
\frametitle{For ET class $[f_{8,2}]$: matrices}
1041
\begin{figure}
1042
\centering
1043
\begin{minipage}{.48\textwidth}
1044
\centering
1045
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_2_weight_class_matrix.png}
1046
\captionof{figure}{$[f_{8,2}]$: weight classes}
1047
\label{fig:8_2_weight_class_matrix}
1048
\end{minipage}%
1049
\begin{minipage}{.48\textwidth}
1050
\centering
1051
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_2_bent_cayley_graph_index_matrix.png}
1052
\captionof{figure}{$[f_{8,2}]$: 4 extended Cayley classes}
1053
\label{fig:8_2_bent_cayley_graph_index_matrix}
1054
\end{minipage}
1055
\end{figure}
1056
~
1057
\end{frame}
1058
\begin{frame}
1059
\frametitle{For ET class $[f_{8,3}]$: matrices}
1060
\begin{figure}
1061
\centering
1062
\begin{minipage}{.48\textwidth}
1063
\centering
1064
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_3_weight_class_matrix.png}
1065
\captionof{figure}{$[f_{8,3}]$: weight classes}
1066
\label{fig:8_3_weight_class_matrix}
1067
\end{minipage}%
1068
\begin{minipage}{.48\textwidth}
1069
\centering
1070
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_3_bent_cayley_graph_index_matrix.png}
1071
\captionof{figure}{$[f_{8,3}]$: 6 extended Cayley classes}
1072
\label{fig:8_3_bent_cayley_graph_index_matrix}
1073
\end{minipage}
1074
\end{figure}
1075
~
1076
\end{frame}
1077
\begin{frame}
1078
\frametitle{For ET class $[f_{8,4}]$: matrices}
1079
\begin{figure}
1080
\centering
1081
\begin{minipage}{.48\textwidth}
1082
\centering
1083
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_4_weight_class_matrix.png}
1084
\captionof{figure}{$[f_{8,4}]$: weight classes}
1085
\label{fig:8_4_weight_class_matrix}
1086
\end{minipage}%
1087
\begin{minipage}{.48\textwidth}
1088
\centering
1089
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_4_bent_cayley_graph_index_matrix.png}
1090
\captionof{figure}{$[f_{8,4}]$: 5 extended Cayley classes}
1091
\label{fig:8_4_bent_cayley_graph_index_matrix}
1092
\end{minipage}
1093
\end{figure}
1094
~
1095
\end{frame}
1096
\begin{frame}
1097
\frametitle{For ET class $[f_{8,5}]$: matrices}
1098
\begin{figure}
1099
\centering
1100
\begin{minipage}{.48\textwidth}
1101
\centering
1102
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_5_weight_class_matrix.png}
1103
\captionof{figure}{$[f_{8,5}]$: weight classes}
1104
\label{fig:8_5_weight_class_matrix}
1105
\end{minipage}%
1106
\begin{minipage}{.48\textwidth}
1107
\centering
1108
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_5_bent_cayley_graph_index_matrix.png}
1109
\captionof{figure}{$[f_{8,5}]$: 9 extended Cayley classes}
1110
\label{fig:8_5_bent_cayley_graph_index_matrix}
1111
\end{minipage}
1112
\end{figure}
1113
~
1114
\end{frame}
1115
\begin{frame}
1116
\frametitle{For ET class $[f_{8,6}]$: matrices}
1117
\begin{figure}
1118
\centering
1119
\begin{minipage}{.48\textwidth}
1120
\centering
1121
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_6_weight_class_matrix.png}
1122
\captionof{figure}{$[f_{8,6}]$: weight classes}
1123
\label{fig:8_6_weight_class_matrix}
1124
\end{minipage}%
1125
\begin{minipage}{.48\textwidth}
1126
\centering
1127
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_6_bent_cayley_graph_index_matrix.png}
1128
\captionof{figure}{$[f_{8,6}]$: 9 extended Cayley classes}
1129
\label{fig:8_6_bent_cayley_graph_index_matrix}
1130
\end{minipage}
1131
\end{figure}
1132
The same 9 classes as $[f_{8,5}]$, with the same frequencies!
1133
\end{frame}
1134
\begin{frame}
1135
\frametitle{For ET class $[f_{8,7}]$: matrices}
1136
\begin{figure}
1137
\centering
1138
\begin{minipage}{.48\textwidth}
1139
\centering
1140
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_7_weight_class_matrix.png}
1141
\captionof{figure}{$[f_{8,7}]$: weight classes}
1142
\label{fig:8_7_weight_class_matrix}
1143
\end{minipage}%
1144
\begin{minipage}{.48\textwidth}
1145
\centering
1146
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_7_bent_cayley_graph_index_matrix.png}
1147
\captionof{figure}{$[f_{8,7}]$: 5 extended Cayley classes}
1148
\label{fig:8_7_bent_cayley_graph_index_matrix}
1149
\end{minipage}
1150
\end{figure}
1151
~
1152
\end{frame}
1153
\begin{frame}
1154
\frametitle{For ET class $[f_{8,8}]$: matrices}
1155
\begin{figure}
1156
\centering
1157
\begin{minipage}{.48\textwidth}
1158
\centering
1159
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_8_weight_class_matrix.png}
1160
\captionof{figure}{$[f_{8,8}]$: weight classes}
1161
\label{fig:8_8_weight_class_matrix}
1162
\end{minipage}%
1163
\begin{minipage}{.48\textwidth}
1164
\centering
1165
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_8_bent_cayley_graph_index_matrix.png}
1166
\captionof{figure}{$[f_{8,8}]$: 6 extended Cayley classes}
1167
\label{fig:8_8_bent_cayley_graph_index_matrix}
1168
\end{minipage}
1169
\end{figure}
1170
~
1171
\end{frame}
1172
\begin{frame}
1173
\frametitle{For ET class $[f_{8,9}]$: matrices}
1174
\begin{figure}
1175
\centering
1176
\begin{minipage}{.48\textwidth}
1177
\centering
1178
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_9_bent_cayley_graph_index_matrix.png}
1179
\captionof{figure}{$[f_{8,9}]$: 8 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}
1180
\label{fig:c8_9_bent_cayley_graph_index_matrix}
1181
\end{minipage}
1182
\begin{minipage}{.48\textwidth}
1183
\centering
1184
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_9_dual_cayley_graph_index_matrix.png}
1185
\captionof{figure}{$[f_{8,9}]$: 8 extended Cayley classes of dual bent functions}
1186
\label{fig:c8_9_dual_cayley_graph_index_matrix}
1187
\end{minipage}%
1188
\end{figure}
1189
4 of the 8 classes form 2 dual pairs of classes.
1190
\end{frame}
1191
\begin{frame}
1192
\frametitle{For ET class $[f_{8,10}]$: matrices}
1193
\begin{figure}
1194
\centering
1195
\begin{minipage}{.48\textwidth}
1196
\centering
1197
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_10_bent_cayley_graph_index_matrix.png}
1198
\captionof{figure}{$[f_{8,10}]$: 10 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}
1199
\label{fig:c8_10_bent_cayley_graph_index_matrix}
1200
\end{minipage}
1201
\begin{minipage}{.48\textwidth}
1202
\centering
1203
\includegraphics[width=.9\linewidth]{../matrix_plot/re8_10_dual_cayley_graph_index_matrix.png}
1204
\captionof{figure}{$[f_{8,10}]$: 10 extended Cayley classes of dual bent functions}
1205
\label{fig:c8_10_dual_cayley_graph_index_matrix}
1206
\end{minipage}%
1207
\end{figure}
1208
6 of the 10 classes form 3 dual pairs of classes.
1209
\end{frame}
1210
\end{colortheme}
1211
\begin{colortheme}{seagull}
1212
\begin{frame}[fragile]
1213
\frametitle{For 8 dimensions: number of partial spread \\ bent functions and EA classes}
1214
1215
According to Langevin and Hou (2011)
1216
there are $70576747237594114392064 \approx 2^{75.9}$ \Emph{partial spread} bent functions in dimension 8,
1217
contained in $14758$ EA classes, of which $14756$ have degree 4.
1218
1219
~
1220
1221
The EA class representatives are listed at Langevin's web site
1222
1223
\begin{verbatim}
1224
http://langevin.univ-tln.fr/project/spread/psp.html
1225
\end{verbatim}
1226
1227
\slidecite{Langevin and Hou 2011}
1228
\end{frame}
1229
\end{colortheme}
1230
\begin{colortheme}{jubata}
1231
\begin{frame}
1232
\frametitle{Example partial spread ET class $[psf_{9,5439}]$}
1233
\begin{figure}
1234
\centering
1235
\begin{minipage}{.48\textwidth}
1236
\centering
1237
\includegraphics[width=.9\linewidth]{../matrix_plot/psf_9_5439_bent_cayley_graph_index_matrix.png}
1238
\captionof{figure}{$[psf_{9,5439}]$: 16 extended Cayley classes ~~ ~~~~ ~~~~ ~~~~~~~~~}
1239
\label{fig:psf_9_5439_bent_cayley_graph_index_matrix}
1240
\end{minipage}
1241
\begin{minipage}{.48\textwidth}
1242
\centering
1243
\includegraphics[width=.9\linewidth]{../matrix_plot/psf_9_5439_dual_cayley_graph_index_matrix.png}
1244
\captionof{figure}{$[psf_{9,5439}]$: 16 extended Cayley classes of dual bent functions}
1245
\label{fig:psf_9_5439_dual_cayley_graph_index_matrix}
1246
\end{minipage}%
1247
\end{figure}
1248
6 of the 16 classes form 3 dual pairs of classes.
1249
\end{frame}
1250
\begin{colortheme}{seagull}
1251
\begin{frame}[fragile]
1252
\frametitle{For 8 dimensions: Bent functions from CAST-128 S-boxes}
1253
1254
The CAST-128 encryption algorithm is used in PGP and elsewhere.
1255
1256
CAST-128, including the S-boxes, is specified by IETF RFC 2144:
1257
\begin{verbatim}
1258
https://www.ietf.org/rfc/rfc2144.txt
1259
\end{verbatim}
1260
1261
The algorithm uses 8 S-boxes, each of which consists of 32 binary bent functions in 8 dimensions,
1262
with degree 4.
1263
1264
~
1265
1266
\slidecite{Adams 1997}
1267
\end{frame}
1268
\end{colortheme}
1269
\begin{frame}
1270
\frametitle{Example CAST-128 ET class $[cast128_{1,0}]$}
1271
\begin{figure}
1272
\centering
1273
\begin{minipage}{.48\textwidth}
1274
\centering
1275
1276
\includegraphics[width=.9\linewidth]{../matrix_plot/cast_128_1_0_weight_class_matrix.png}
1277
\captionof{figure}{$[cast128_{1,0}]$: weight classes ~~~~~~ ~~~~~~~~}
1278
\label{fig:cast128_1_1_weight_class_matrix}
1279
\end{minipage}
1280
\begin{minipage}{.48\textwidth}
1281
\centering
1282
\includegraphics[width=.9\linewidth]{../matrix_plot/cast_128_1_0_bent_cayley_graph_index_matrix.png}
1283
\captionof{figure}{$[cast128_{1,0}]$: $65\,536$ extended Cayley classes}
1284
\label{fig:cast_128_1_1_bent_cayley_graph_index_matrix}
1285
\end{minipage}%
1286
\end{figure}
1287
Dual bent functions yield another $65\,536$ extended Cayley classes!
1288
\end{frame}
1289
\section{Questions}
1290
\begin{frame}
1291
\frametitle{Open problems}
1292
Settled only for dimensions up to 6:
1293
\begin{enumerate}
1294
\item
1295
How many EC classes are there for each dimension?
1296
Are there ``Exponential numbers'' of classes?
1297
\item
1298
In $n$ dimensions,
1299
which ET classes contain the maximum number, $4^n$, of different EC classes?
1300
\item
1301
Which EC classes overlap more than one ET class?
1302
\item
1303
Which bent functions are extended affine equivalent to their dual?
1304
\item
1305
Which bent functions are Cayley equivalent to their dual?
1306
\end{enumerate}
1307
~
1308
1309
Also, what are the remaining EA and EC classes of binary bent functions of dimension 8 and degree 4?
1310
1311
~
1312
1313
\slidecite{Kantor 1983; Jungnickel and Tonchev 1991; Langevin and Leander 2008, 2011}
1314
\end{frame}
1315
\end{colortheme}
1316
\section{Source code}
1317
\begin{colortheme}{jubata}
1318
\begin{frame}[fragile]
1319
\frametitle{Source code on GitHub and SageMathCloud}
1320
~
1321
1322
GitHub: Sage and Python source code
1323
1324
\begin{verbatim}
1325
https://github.com/penguian/Boolean-Cayley-graphs
1326
\end{verbatim}
1327
1328
~
1329
1330
SageMathCloud: Public worksheets, Sage and Python source code
1331
1332
\begin{verbatim}
1333
http://tinyurl.com/Boolean-Cayley-graphs
1334
\end{verbatim}
1335
1336
\end{frame}
1337
\end{colortheme}
1338
\section{Last}
1339
\begin{colortheme}{jubata}
1340
\begin{frame}
1341
\frametitle{Thank you.}
1342
1343
\begin{figure}
1344
\centering
1345
\begin{minipage}{.48\textwidth}
1346
\centering
1347
\includegraphics[width=.9\linewidth]{../matrix_plot/tau_3_bent_cayley_graph_index_matrix.png}
1348
\captionof{figure}{$[\tau_3]$: 3 extended Cayley classes}
1349
\label{fig:tau_3_bent_cayley_graph_index_matrix}
1350
\end{minipage}
1351
\begin{minipage}{.48\textwidth}
1352
\centering
1353
\includegraphics[width=.9\linewidth]{../matrix_plot/tau_4_bent_cayley_graph_index_matrix.png}
1354
\captionof{figure}{$[\tau_4]$: 5 extended Cayley classes}
1355
\label{fig:tau_4_bent_cayley_graph_index_matrix}
1356
\end{minipage}%
1357
\end{figure}
1358
\end{frame}
1359
1360
\end{colortheme}
1361
\end{document}
1362
1363