Contact Us!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

| Download
Views: 61
Image: ubuntu2204
Kernel: SageMath 10.3

Substitutions in Multiple Integrals

Substitutions in double integrals

Recall the one-dimensional case g(a)g(b)f(x)dx=abf(g(u))g(u)du\int_{g(a)}^{g(b)}f(x)dx=\int_a^b f(g(u))g'(u)du

Suppose that a region GG in the uvuv-plane is transformed into the region RR in the xyxy-plane by x=g(u,v),y=h(u,v).x=g(u,v),\quad y=h(u,v).

We assume the transformation is one-to-one on the interior of GG.

  • image of GG: RR

  • preimage of RR: GG .

Jacobian

definition

The Jacobian determinant or Jacobian of the coordinate transformation x=g(u,v),y=h(u,v)x = g(u, v), y = h(u, v) is J(u,v)=(x,y)(u,v)=xuxvyuyv=xuyvyuxv.J(u,v)={\partial (x,y)\over \partial (u,v)}=\begin{vmatrix} {\partial x\over\partial u} & {\partial x\over\partial v}\\ {\partial y\over\partial u} & {\partial y\over\partial v} \end{vmatrix}={\partial x\over\partial u}{\partial y\over\partial v}-{\partial y\over\partial u}{\partial x\over\partial v}.

Theorem

Suppose that f(x,y)f(x, y) is continuous over the region RR. Let GG be the preimage of R under the transformation x=g(u,v),y=h(u,v)x = g(u, v), y = h(u, v), assumed to be one-to-one on the interior of GG. If the functions gg and hh have continuous first partial derivatives within the interior of GG, then Rf(x,y)dxdy=Gf(g(u,v),h(u,v))(x,y)(u,v)dudv.\iint_Rf(x,y)dxdy=\iint_G f(g(u,v),h(u,v))\left|{\partial (x,y)\over\partial (u,v)}\right|dudv.

Example1: evaluate 04x=y/2x=(y/2)+12xy2dxdy\int_0^4\int_{x=y/2}^{x=(y/2)+1}{2x-y\over 2}dxdy by the transformation u=2xy2,v=y2.u={2x-y\over 2}, \quad v={y\over 2}. Solution:

From the transformation equations, we know that: x=u+v,y=2vx=u+v, y=2v xyxy-equations for the boundary of RR \rightarrow uvuv-equations for the boundary of GG:

  • x=y/2u=0x=y/2 \rightarrow u=0

  • x=y/2+1u=1x=y/2+1 \rightarrow u=1

  • y=0v=0y=0 \rightarrow v=0

  • y=4v=2y=4 \rightarrow v=2

J(u,v)=xuxvyuyv=u(u+v)v(u+v)u(2v)v(2v)=1102=2J(u,v)=\begin{vmatrix} {\partial x\over\partial u} & {\partial x\over\partial v}\\ {\partial y\over\partial u} & {\partial y\over\partial v} \end{vmatrix} =\begin{vmatrix} {{\partial \over\partial u}(u+v)} & {{\partial \over\partial v}(u+v)}\\ {{\partial \over\partial u}(2v)} & {{\partial \over\partial v}(2v)} \end{vmatrix} =\begin{vmatrix} {1} & {1}\\ {0} & {2} \end{vmatrix} =204x=y/2x=(y/2)+12xy2dxdy=0201uJ(u,v)dudv=2\int_0^4\int_{x=y/2}^{x=(y/2)+1}{2x-y\over 2}dxdy=\int_0^2\int_0^1u|J(u,v)|dudv=2

Example2: evaluate 0101xx+y(y2x)2dydx\int_0^1\int_0^{1-x}{\sqrt{x+y}(y-2x)^2}dydx Solution:

Here we need to define the transformation equations by ourselves. We want to simplify the integral formula while making the boundary of G easy to find. Thus we can define u=x+y,v=y2xu=x+y,v=y-2x And from the transformation equations, we know that: x=uv3,y=2u+v3x={{u-v}\over 3}, y={2u+v\over 3} xyxy-equations for the boundary of RR \rightarrow uvuv-equations for the boundary of GG:

  • x=0v=ux=0 \rightarrow v=u

  • x=1v=u3x=1 \rightarrow v=u-3

  • y=0v=2uy=0 \rightarrow v=-2u

  • y=1xu=1y=1-x \rightarrow u=1

J(u,v)=xuxvyuyv=u(uv3)v(uv3)u(2u+v3)v(2u+v3)=13132313=13J(u,v)=\begin{vmatrix} {\partial x\over\partial u} & {\partial x\over\partial v}\\ {\partial y\over\partial u} & {\partial y\over\partial v} \end{vmatrix} =\begin{vmatrix} {{\partial \over\partial u}({{u-v}\over 3})} & {{\partial \over\partial v}({{u-v}\over 3})}\\ {{\partial \over\partial u}({2u+v\over 3})} & {{\partial \over\partial v}({2u+v\over 3})} \end{vmatrix} =\begin{vmatrix} {1\over 3} & -{1\over 3}\\ {2\over 3} & {1\over 3} \end{vmatrix} ={1\over 3}0101xx+y(y2x)2dydx=012uuuv2J(u,v)dvdu=29\int_0^1\int_0^{1-x}{\sqrt{x+y}(y-2x)^2}dydx=\int_0^1\int_{-2u}^{u}{\sqrt{u}v^2}|J(u,v)|dvdu={2\over 9}

Example3: evaluate 121/yyyxexydxdy\int_1^2\int_{1/y}^y\sqrt{y\over x}e^{\sqrt{xy}}dxdy Solution:

We can define u=yx,v=xyu=\sqrt{y\over x},v=\sqrt{xy} And from the transformation equations, we know that: x=vu,y=uvx={v\over u}, y=uv xyxy-equations for the boundary of RR \rightarrow uvuv-equations for the boundary of GG:

  • y1uv1y\geq 1 \rightarrow uv\geq 1

  • y2uv2y\leq 2 \rightarrow uv\leq 2

  • x1/yv1x\geq 1/y \rightarrow v\geq 1

  • xyu1x\leq y \rightarrow u\geq 1

J(u,v)=xuxvyuyv=u(vu)v(vu)u(uv)v(uv)=vu21uvu=2vuJ(u,v)=\begin{vmatrix} {\partial x\over\partial u} & {\partial x\over\partial v}\\ {\partial y\over\partial u} & {\partial y\over\partial v} \end{vmatrix} =\begin{vmatrix} {{\partial \over\partial u}({v\over u})} & {{\partial \over\partial v}({v\over u})}\\ {{\partial \over\partial u}(uv)} & {{\partial \over\partial v}(uv)} \end{vmatrix} =\begin{vmatrix} -{v\over u^2} & {1\over u}\\ {v} & {u} \end{vmatrix} ={2v\over u}121/yyyxexydxdy=1212/vu×evJ(u,v)dudv=2e24e\int_1^2\int_{1/y}^y\sqrt{y\over x}e^{\sqrt{xy}}dxdy=\int_1^2\int_1^{2/v}{u\times e^v}|J(u,v)|dudv=2e^2-4e
reset() var('u v') x = v/u y = u*v J = jacobian([x, y], [u, v]) print(J.determinant())
-2*v/u

Substitutions in triple integrals

J(u,v,w)=(x,y,z)(u,v,w)=xuxvxwyuyvywzuzvzwJ(u,v,w)={\partial (x,y,z)\over \partial (u,v,w)}=\begin{vmatrix} {\partial x\over\partial u} & {\partial x\over\partial v} & {\partial x\over\partial w}\\ {\partial y\over\partial u} & {\partial y\over\partial v} & {\partial y\over\partial w}\\ {\partial z\over\partial u} & {\partial z\over\partial v} & {\partial z\over\partial w} \end{vmatrix}

Cylindrical coordinates: x=rcosθ, y=rsinθ, z=z.x=r\cos\theta,~y=r\sin\theta,~z=z. J(r,θ,z)=(x,y,z)(r,θ,z)=xrxθxzyryθyzzrzθzz=cosθrsinθ0sinθrcosθ0001=rJ(r,\theta,z)={\partial (x,y,z)\over \partial (r,\theta,z)}=\begin{vmatrix} {\partial x\over\partial r} & {\partial x\over\partial \theta} & {\partial x\over\partial z}\\ {\partial y\over\partial r} & {\partial y\over\partial \theta} & {\partial y\over\partial z}\\ {\partial z\over\partial r} & {\partial z\over\partial \theta} & {\partial z\over\partial z} \end{vmatrix} =\begin{vmatrix} {\cos \theta} & {-r \sin \theta} & {0}\\ {\sin \theta} & {r \cos \theta} & {0}\\ {0} & {0} & {1} \end{vmatrix} =r Spherical coordinates:x=ρsinϕcosθ, y=ρsinϕsinθ, z=ρcosϕ.x=\rho\sin\phi\cos\theta,~y=\rho\sin\phi\sin\theta,~z=\rho\cos\phi. J(ρ,ϕ,θ)=(x,y,z)(ρ,ϕ,θ)=xρxϕxθyρyϕyθzρzϕzθ=sinϕcosθρcosϕcosθρsinϕsinθsinϕsinθρcosϕsinθρsinϕcosθcosϕρsinϕ0=ρ2sinϕJ(\rho,\phi,\theta)={\partial (x,y,z)\over \partial (\rho,\phi,\theta)}=\begin{vmatrix} {\partial x\over\partial \rho} & {\partial x\over\partial \phi} & {\partial x\over\partial \theta}\\ {\partial y\over\partial \rho} & {\partial y\over\partial \phi} & {\partial y\over\partial \theta}\\ {\partial z\over\partial \rho} & {\partial z\over\partial \phi} & {\partial z\over\partial \theta} \end{vmatrix} =\begin{vmatrix} {\sin \phi \cos \theta} & {\rho \cos \phi \cos \theta} & {- \rho \sin \phi \sin \theta}\\ {\sin \phi \sin \theta} & {\rho \cos \phi \sin \theta} & {\rho \sin \phi \cos \theta}\\ {\cos \phi} & {-\rho \sin \phi} & {0} \end{vmatrix} =\rho^2 \sin \phi

reset() var('rho phi theta') x = rho*sin(phi)*cos(theta) y = rho*sin(phi)*sin(theta) z = rho*cos(phi) J = jacobian([x, y, z], [rho, phi, theta]) J.determinant().simplify_full()
rho^2*sin(phi)

Example: Evaluate 0304x=y/2x=(y/2)+1(2xy2+z3)dxdydz\int_0^3\int_0^4\int_{x=y/2}^{x=(y/2)+1}\left({2x-y\over2}+{z\over3}\right)dxdydz with transformation u=(2xy)/2, v=y/2, w=z/3.u=(2x-y)/2,~v=y/2,~w=z/3. From the transformation equations, we know that: x=u+v,y=2v,z=3wx=u+v, y=2v,z=3w xyzxyz-equations for the boundary of RR \rightarrow uvwuvw-equations for the boundary of GG:

  • x=y/2u=0x=y/2 \rightarrow u=0

  • x=y/2+1u=1x=y/2+1 \rightarrow u=1

  • y=0v=0y=0 \rightarrow v=0

  • y=4v=2y=4 \rightarrow v=2

  • z=0w=0z=0 \rightarrow w=0

  • z=3w=1z=3 \rightarrow w=1

J(u,v,w)=(x,y,z)(u,v,w)=xuxvxwyuyvywzuzvzw=110020003=6J(u,v,w)={\partial (x,y,z)\over \partial (u,v,w)}=\begin{vmatrix} {\partial x\over\partial u} & {\partial x\over\partial v} & {\partial x\over\partial w}\\ {\partial y\over\partial u} & {\partial y\over\partial v} & {\partial y\over\partial w}\\ {\partial z\over\partial u} & {\partial z\over\partial v} & {\partial z\over\partial w} \end{vmatrix} =\begin{vmatrix} {1} & {1} & {0}\\ {0} & {2} & {0}\\ {0} & {0} & {3} \end{vmatrix} =60304x=y/2x=(y/2)+1(2xy2+z3)dxdydz=010201(u+w)J(u,v,w)dudvdw=12\int_0^3\int_0^4\int_{x=y/2}^{x=(y/2)+1}\left({2x-y\over2}+{z\over3}\right)dxdydz=\int_0^1\int_0^2\int_0^1(u+w)|J(u,v,w)|dudvdw=12
reset() var('u v w') x = u + v y = 2*v z = 3*w J = jacobian([x, y, z], [u, v, w]) J.determinant()
6
reset() var('x y z') u = (2*x-y)/2 v = y/2 w = z/3 J = jacobian([u, v, w], [x, y, z]) J.determinant()
1/6