CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Different functions that compute the Fibonacci sequence.

Project: MAT 2540
Views: 120
Visibility: Unlisted (only visible to those who know the link)
Image: ubuntu2004
Kernel: SageMath 8.6

Fibonacci Sequence

Below is a recursive function that computes the nnth Fibonacci number, fnf_n. The amount of code we write is small, but this cannot compute fnf_n for large nn quickly.

def fib_recursive(n): if n <= 1: return n else: return fib_recursive(n-1) + fib_recursive(n-2)
for i in range(5): print(fib_recursive(i))
0 1 1 2 3

Below is a function that computes the nnth Fibonacci number, fnf_n, using dynamic programming. This function is faster because it trades time for space.

def fib_dyn(n): L = [0,1] if n <= 1: return n else: for i in range(n-1): L.append(L[-1] + L[-2]) return L[-1]
for i in range(30): print(fib_recursive(i))
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 121393 196418 317811 514229

Below is a function that computes the nnth Fibonacci number, fnf_n, quickly without using much memory.

def fib_dyn(n): a, b= 0, 1 if n <= 1: return n else: for i in range(n-1): a, b = b, a+b return b
for i in range(30): print(fib_recursive(i))
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 121393 196418 317811 514229