CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

| Download

SageMath functions manipulating conditional oriented matroids. Among other functions, the check if a set corresponds to a conditional oriented matroid, the generating of that latter from its tope set, its Varchenko determinant computing, and the solving of its Aguiar-Mahajan system are implemented.

Views: 15
License: GPL3
Image: ubuntu2204
#Conditional Oriented Matroids in SageMath #Hery Randriamaro #Institut für Mathematik, Universität Kassel #[email protected] # 1 Conditional Oriented Matroids # 1.1 Sign Systems #Zero Set# def Zero(X): z = Set() for i in range(len(X)): if X[i] == 0: z = z.union(Set([i])) return z #Element Support# def Support(X): s = Set() for i in range(len(X)): if X[i] in Set([-1, 1]): s = s.union(Set([i])) return s #Separation Set# def Separation(X, Y): s = Set() for i in range(len(X)): if X[i] in Set([-1, 1]): if X[i] == -Y[i]: s = s.union(Set([i])) return s #Element Composition# def sigma(a, b): if a == 0: return b else: return a def Composition(X, Y): return tuple(sigma(X[i], Y[i]) for i in range(len(X))) #Sign System Fiber# def Restriction(X, A): return tuple(X[i] for i in Set(range(len(X))).difference(A)) def Fiber(L, X, A): F = Set() for Y in L: if Restriction(Y, A) == Restriction(X, A): F = F.union(Set([Y])) return F # 1.2 Conditional Oriented Matroids #Face Symmetry Condition# def neg(X): return tuple(-X[i] for i in range(len(X))) def FS(L): a = True for X in L: for Y in L: a = a & (Composition(X, neg(Y)) in L) return a #Strong Elimination Condition# def SE(L): a = True for X in L: for Y in L: S = Set() for Z in Fiber(L, Composition(X, Y), Separation(X, Y)): S = S.union(Zero(Z)) a = a & (S.intersection(Separation(X, Y)) == Separation(X, Y)) return a #Conditional Oriented Matroid# def COM(L): return FS(L) & SE(L) # 1.3 Oriented Matroids #Zero Vector Condition# def Z(L): return (tuple(0 for i in range(len(L.random_element()))) in L) #Oriented Matroid# def OM(L): return COM(L) & Z(L) # 1.4 Lopsided Systems #Tope Composition Condition# def TC(L): a = True for X in L: for Y in Tuples([-1, 1], len(L.random_element())): a = a & (Composition(X, Y) in L) return a #Lopsided System# def LS(L): return COM(L) & TC(L) # 2 Construction of Conditional Oriented Matroids # 2.1 Deletion and Contraction #Conditional Oriented Matroid Deletion# def Deletion(L, A): return Set([Restriction(X, A) for X in L]) #Conditional Oriented Matroid Contraction# def Contraction(L, A): C = Set() for X in L: if Support(X).intersection(A) == Set(): C = C.union(Set([Restriction(X, A)])) return C # 2.2 Simplification #Coloop Set# def Coloop(L): C = Set() for e in range(len(L.random_element())): Xe = Set([X[e] for X in L]) if len(Xe) == 1: C = C.union(Set([e])) return C #Parallel Element Classes# def parallel(L, e, f): Le = tuple(X[e] for X in L) Lf = tuple(X[f] for X in L) return (Le == Lf) | (Le == neg(Lf)) def Parallel_Element(L): E = Set(range(len(L.random_element()))) P = [] while E.cardinality() > 0: for e in E: Pe = Set([]) for f in E: if parallel(L, e, f): Pe = Pe.union(Set([f])) if Pe.cardinality() > 0: P.append(Pe) E = E.difference(Pe) return P #Simplification# def Simplification(L): P = Parallel_Element(L) F = Set() for Q in P: R = Q.difference(Set([Q.random_element()])) F = F.union(R) E = Set(range(len(L.random_element()))) A = F.union(Coloop(L)) return Deletion(L, A) # 2.3 Generating from Topes #Generalized Theorem of Mandel# def Generalized_Mandel(T): M = Set() for X in Tuples([-1, 0, 1], len(T.random_element())): a = True for Y in T: a = a & (Composition(X, neg(Y)) in T) if a == True: M = M.union(Set([tuple(X)])) return M # 3 Special Functions # 3.1 The Varchenko Matrix #Variables# class VariableGenerator(object): def __init__(self, prefix): self.__prefix = prefix @cached_method def __getitem__(self, key): return SR.var("%s%s"%(self.__prefix,key)) a = VariableGenerator('a') b = VariableGenerator('b') def q(k, l): if l == -1: return(a[k]) if l == 1: return(b[k]) #Covector Distance Function# def v(X, Y): x=1 for i in Separation(X, Y): x = x*q(i, X[i]) return x #Varchenko Matrix# def prec(X, Y): a = True for i in range(len(X)): a = a & (X[i] in Set([0, Y[i]])) return a def IsMax(L, X): a = True if X not in L: a = False for Y in L.difference(Set([X])): a = a & (not prec(X, Y)) return a def Tope(L): S = Set() for X in L: if IsMax(L, X): S = S.union(Set([X])) return S def V(L): return matrix([[v(X, Y) for Y in Tope(L)] for X in Tope(L)]) #Varchenko Determinant# def Weight(X): x=1 for i in Zero(X): x = x*a[i]*b[i] return x def iBoundary(L, i, X): S = Set() for Y in L.difference(Set([X])): if prec(Y, X) and (Y[i] == 0): S = S.union(Set([Y])) return S def Theta(L, X): M = [] i = Zero(X).random_element() for Y in Tope(L): if IsMax(iBoundary(L, i, Y), X): M.append(Y) return len(M)/2 def Varchenko(L): return prod([(1-Weight(X))^(Theta(L, X)) for X in L.difference(Tope(L))]) # 3.2 The Aguiar-Mahajan Equation System #Covector Face# def Face(L, X): S = Set() for Y in L: if prec(X, Y): S = S.union(Set([Y])) return S #Element Corank# def Min(L): X = L.random_element() for Y in L: if prec(Y, X): X=Y return X def crk(L, X): k=0 F = Face(L, X).difference(Set([X])) while not (F == Set()): k = k+1 Y = Min(F) F = Face(L, Y).difference(Set([Y])) return k #Element Dimensional Rank# def rk(L): k=0 for X in L: k = max(k, crk(L, X)) return k def drk(L, X): return rk(L) - crk(L, X) #Aguiar-Mahajan Equation System Solution# def Inf(L, X): S = Set() for Y in L.difference(Set([X])): if prec(Y, X): S = S.union(Set([Y])) return S def AM(L, X, o): S = Inf(L, X) if X == Min(L): return o else: return (-1/(1 - v(X, neg(X))*v(neg(X), X)))*sum(AM(L, Y, o) + (-1)^(drk(L, X))*v(neg(X), X)*AM(L, neg(Y), o) for Y in S) def AguiarMahajan(L, o): for X in L: print (X, " --> ", AM(L, X, o))
L1 = Set([(0, 1, 1, -1, 0), (1, 1, 1, -1, 0), (0, 1, 0, 0, 1), (0, 0, 1, -1, 0), (0, 1, 0, 0, 0), (1, 1, 0, -1, -1), (0, 1, 0, 1, -1)]) L2 = Set([(1, 1, 1, 1, 0), (1, 0, 1, 1, 0), (1, -1, 1, 1, 0), (1, -1, 0, 1, 0), (1, -1, 0, 0, 0), (1, -1, 1, 0, 0), (1, -1, -1, 1, 0), (1, -1, -1, -1, 0), (1, -1, 1, -1, 0), (1, -1, -1, 0, 0), (1, -1, 0, -1, 0)]) COM(L1) COM(L2)
False True
L3 = Set([(0, 0, 0, 0, 0), (0, 0, -1, -1, 0), (0, 1, -1, -1, 0), (0, 1, 0, -1,0),(0,1,1,-1,0),(0,1,1,0,0),(0,1,1,1,0),(0,0,1,1, 0), (0, -1, 1, 1, 0), (0, -1, 0, 1, 0), (0, -1, -1, 1, 0), (0, -1, -1, 0, 0), (0, -1, -1, -1, 0)]) L4 = Set([(1, -1, 1, 0, 0), (1, -1, 1, -1, 0), (1, -1, 1, 1, 0), (1, -1, 1, 0, -1), (1, -1, 1, 0, 1), (1, -1, 1, -1, -1), (1, -1, 1, -1, 1), (1, -1, 1, 1, -1), (1, -1, 1, 1, 1)]) OM(L2) OM(L3) LS(L3) LS(L4)
False True False True
Deletion(L2, Set([2, 4])) COM(Deletion(L2, Set([2, 4]))) Contraction(L2, Set([2, 4])) COM(Contraction(L2, Set([2, 4])))
{(1, 0, 1), (1, -1, 0), (1, -1, 1), (1, 1, 1), (1, -1, -1)} True {(1, -1, 0), (1, -1, 1), (1, -1, -1)} True
Simplification(L2) Simplification(L3) Simplification(L4)
{(-1, 1, -1), (-1, 0, 1), (-1, 0, -1), (-1, 1, 1), (-1, -1, -1), (-1, -1, 1), (-1, 0, 0), (-1, 1, 0), (-1, -1, 0), (1, 1, 1), (0, 1, 1)} {(0, -1, -1), (-1, 0, 1), (1, 0, -1), (1, 1, 0), (-1, 1, 1), (-1, -1, -1), (0, 0, 0), (-1, -1, 1), (1, -1, -1), (1, 1, -1), (-1, -1, 0), (1, 1, 1), (0, 1, 1)} {(0, 1), (-1, -1), (0, 0), (-1, 1), (1, 1), (1, -1), (-1, 0), (1, 0), (0, -1)}
T1 = Set([(-1, -1, -1, -1), (1, -1, -1, -1), (1, 1, -1, -1), (1, -1, 1, -1), (1, 1, 1, -1), (1, 1, 1, 1)]) Generalized_Mandel(T1) COM(Generalized_Mandel(T1))
{(1, -1, -1, -1), (1, 0, 1, -1), (0, -1, -1, -1), (1, 0, -1, -1), (-1, -1, -1, -1), (1, -1, 1, -1), (1, 1, 1, 0), (1, 0, 0, -1), (1, 1, 0, -1), (1, -1, 0, -1), (1, 1, 1, -1), (1, 1, 1, 1), (1, 1, -1, -1)} True
V(Simplification(L2)) Varchenko(Simplification(L2)) V(Simplification(L3)) Varchenko(Simplification(L3)) V(Simplification(L4)) Varchenko(Simplification(L4))
[ 1 a2 b1 a0*a2 a2*b1] [ b2 1 b1*b2 a0 b1] [ a1 a1*a2 1 a0*a1*a2 a2] [ b0*b2 b0 b0*b1*b2 1 b0*b1] [ a1*b2 a1 b2 a0*a1 1] -(a0*b0 - 1)*(a1*b1 - 1)^2*(a2*b2 - 1)^2 [ 1 a2*b0 b0*b1 a2 a2*b0*b1 b1] [ a0*b2 1 b1*b2 a0 b1 a0*b1*b2] [ a0*a1 a1*a2 1 a0*a1*a2 a2 a0] [ b2 b0 b0*b1*b2 1 b0*b1 b1*b2] [a0*a1*b2 a1 b2 a0*a1 1 a0*b2] [ a1 a1*a2*b0 b0 a1*a2 a2*b0 1] -(a0*a1*a2*b0*b1*b2 - 1)*(a0*b0 - 1)^2*(a1*b1 - 1)^2*(a2*b2 - 1)^2 [ 1 a0 a0*b1 b1] [ b0 1 b1 b0*b1] [a1*b0 a1 1 b0] [ a1 a0*a1 a0 1] (a0*b0 - 1)^2*(a1*b1 - 1)^2
AguiarMahajan(Simplification(L3), 1) OM(Simplification(L4)) AguiarMahajan(Simplification(L4), -1)
(0, -1, -1) --> -(b1*b2 - 1)/(a1*a2*b1*b2 - 1) (-1, 0, 1) --> -(a2*b0 - 1)/(a0*a2*b0*b2 - 1) (1, 0, -1) --> -(a0*b2 - 1)/(a0*a2*b0*b2 - 1) (1, 1, 0) --> -(a0*a1 - 1)/(a0*a1*b0*b1 - 1) (-1, 1, 1) --> -((a0*b2 - 1)*a1*a2*b0/(a0*a2*b0*b2 - 1) + (b1*b2 - 1)*a1*a2*b0/(a1*a2*b1*b2 - 1) - a1*a2*b0 + (a1*a2 - 1)/(a1*a2*b1*b2 - 1) + (a2*b0 - 1)/(a0*a2*b0*b2 - 1) - 1)/(a0*a1*a2*b0*b1*b2 - 1) (-1, -1, -1) --> -((a0*a1 - 1)*b0*b1*b2/(a0*a1*b0*b1 - 1) + (a1*a2 - 1)*b0*b1*b2/(a1*a2*b1*b2 - 1) - b0*b1*b2 + (b0*b1 - 1)/(a0*a1*b0*b1 - 1) + (b1*b2 - 1)/(a1*a2*b1*b2 - 1) - 1)/(a0*a1*a2*b0*b1*b2 - 1) (0, 0, 0) --> 1 (-1, -1, 1) --> -((a0*a1 - 1)*a2*b0*b1/(a0*a1*b0*b1 - 1) + (a0*b2 - 1)*a2*b0*b1/(a0*a2*b0*b2 - 1) - a2*b0*b1 + (a2*b0 - 1)/(a0*a2*b0*b2 - 1) + (b0*b1 - 1)/(a0*a1*b0*b1 - 1) - 1)/(a0*a1*a2*b0*b1*b2 - 1) (1, -1, -1) --> -((a1*a2 - 1)*a0*b1*b2/(a1*a2*b1*b2 - 1) + (a2*b0 - 1)*a0*b1*b2/(a0*a2*b0*b2 - 1) - a0*b1*b2 + (a0*b2 - 1)/(a0*a2*b0*b2 - 1) + (b1*b2 - 1)/(a1*a2*b1*b2 - 1) - 1)/(a0*a1*a2*b0*b1*b2 - 1) (1, 1, -1) --> -((a2*b0 - 1)*a0*a1*b2/(a0*a2*b0*b2 - 1) + (b0*b1 - 1)*a0*a1*b2/(a0*a1*b0*b1 - 1) - a0*a1*b2 + (a0*a1 - 1)/(a0*a1*b0*b1 - 1) + (a0*b2 - 1)/(a0*a2*b0*b2 - 1) - 1)/(a0*a1*a2*b0*b1*b2 - 1) (-1, -1, 0) --> -(b0*b1 - 1)/(a0*a1*b0*b1 - 1) (1, 1, 1) --> -((b0*b1 - 1)*a0*a1*a2/(a0*a1*b0*b1 - 1) + (b1*b2 - 1)*a0*a1*a2/(a1*a2*b1*b2 - 1) - a0*a1*a2 + (a0*a1 - 1)/(a0*a1*b0*b1 - 1) + (a1*a2 - 1)/(a1*a2*b1*b2 - 1) - 1)/(a0*a1*a2*b0*b1*b2 - 1) (0, 1, 1) --> -(a1*a2 - 1)/(a1*a2*b1*b2 - 1) True (0, 1) --> (a1 - 1)/(a1*b1 - 1) (-1, -1) --> ((a0 - 1)*b0*b1/(a0*b0 - 1) + (a1 - 1)*b0*b1/(a1*b1 - 1) - b0*b1 + (b0 - 1)/(a0*b0 - 1) + (b1 - 1)/(a1*b1 - 1) - 1)/(a0*a1*b0*b1 - 1) (0, 0) --> -1 (-1, 1) --> ((a0 - 1)*a1*b0/(a0*b0 - 1) - a1*b0 + a1*b0*(b1 - 1)/(a1*b1 - 1) + (a1 - 1)/(a1*b1 - 1) + (b0 - 1)/(a0*b0 - 1) - 1)/(a0*a1*b0*b1 - 1) (1, 1) --> -(a0*a1 - a0*a1*(b0 - 1)/(a0*b0 - 1) - a0*a1*(b1 - 1)/(a1*b1 - 1) - (a0 - 1)/(a0*b0 - 1) - (a1 - 1)/(a1*b1 - 1) + 1)/(a0*a1*b0*b1 - 1) (1, -1) --> -(a0*b1 - a0*(a1 - 1)*b1/(a1*b1 - 1) - a0*(b0 - 1)*b1/(a0*b0 - 1) - (a0 - 1)/(a0*b0 - 1) - (b1 - 1)/(a1*b1 - 1) + 1)/(a0*a1*b0*b1 - 1) (-1, 0) --> (b0 - 1)/(a0*b0 - 1) (1, 0) --> (a0 - 1)/(a0*b0 - 1) (0, -1) --> (b1 - 1)/(a1*b1 - 1)