import scipy.stats
import json
def read(d,n,p=32749):
return json.loads(open(f'data/v-d{d}n{n}p{p}.json').read())
def pl_hist(d,n,bins=100,p=32749):
v = stats.TimeSeries(read(d,n,p))
sigma = v.standard_deviation()
T = RealDistribution('gaussian', sigma)
return histogram(v, bins=bins, density=True, frame=True) + T.plot(-3*sigma, 3*sigma, color='red', thickness=2, linestyle='--')
def pl_mean(d,n,p=32749):
w = stats.TimeSeries(read(d,n,p))
return stats.TimeSeries([w[:i].mean() for i in range(100,len(w))]).plot(plot_points=n, frame=True)
def pl_sd(d,n,p=32749):
w = stats.TimeSeries(read(d,n,p))
return stats.TimeSeries([w[:i].standard_deviation() for i in range(100,len(w))]).plot(plot_points=n, frame=True)
def pl(d,n,p=32749):
print(f"d={d}, numCoeffs={n}")
print(scipy.stats.normaltest(read(d,n,p)))
show(graphics_array([[pl_hist(d,n), pl_hist(d,n,200)], [pl_mean(d,n), pl_sd(d,n)]]), figsize=[14,6])