Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
563 views

Modelo matemático para problemas de contaminación

Ecuación Streeter-Phelps

Tuberías de Aguas Residuales
### Ecuación de Streeter - Phelps L0, k1, k2, D0 = var('L0, k1, k2, D0') D(t) = L0*k1/(k2 - k1)*(e^(-k1*t) - e^(-k2*t)) - D0*e^(-k2*t) print("La Ecuación Streeter-Phelps estudiada es:") print('D(t) = ') show(D(t)) ## Donde: # D(t) = deficit de oxígeno en el tiempo t (mg de O2/L) # L0 = Demanda bioquímicade oxígeno inicial # k1 = tasa de desoxigenación # k2 = tasa de ocigenación # D0 = Déficit de oxígeno inicial # L0, k1, k2 y D0 = constantes # t = tiempo
La Ecuación Streeter-Phelps estudiada es: D(t) =
L0k1(e(k1t)e(k2t))k1k2D0e(k2t)\displaystyle -\frac{L_{0} k_{1} {\left(e^{\left(-k_{1} t\right)} - e^{\left(-k_{2} t\right)}\right)}}{k_{1} - k_{2}} - D_{0} e^{\left(-k_{2} t\right)}

Derivada de la función D(t)

# Derivamos la Ecuacion D(t): dDdt(t) = diff(D(t), t); print("La derivada de la función D(t), es: ") print("dDdt(t) = ") show(dDdt(t))
La derivada de la función D(t), es: dDdt(t) =
D0k2e(k2t)+(k1e(k1t)k2e(k2t))L0k1k1k2\displaystyle D_{0} k_{2} e^{\left(-k_{2} t\right)} + \frac{{\left(k_{1} e^{\left(-k_{1} t\right)} - k_{2} e^{\left(-k_{2} t\right)}\right)} L_{0} k_{1}}{k_{1} - k_{2}}

Reesolvemos para los valores del inciso a)

valores del inciso a):

L0=0.5L0 = -0.5
k1=0.3k1 = -0.3
k2=1k2 = 1
D0=5D0 = -5
## Puntos críticos para el inciso a): L0 = -0.5 k1 = -0.3 k2 = 1 D0 = -5 D(t) = L0*k1/(k2 - k1)*(e^(-k1*t) - e^(-k2*t)) - D0*e^(-k2*t); dDdt(t) = diff(D(t), t); # Igualamos la derivado a cero (dDdt(t) = 0) y resolvemos para "t": puntos_criticos = solve(dDdt(t) == 0, t); print("Los tiempo críticos son: ") for pts in puntos_criticos: show(pts) print("\nEl único tiempo real, es: ") print("\nt = ") t_min = puntos_criticos[-1].rhs() show(n(t_min))
Los tiempo críticos son:
t=10log(19127011391213e(213iπ))\displaystyle t = 10 \, \log\left(\frac{1}{9} \cdot 1270^{\frac{1}{13}} 9^{\frac{12}{13}} e^{\left(\frac{2}{13} i \, \pi\right)}\right)
t=10log(19127011391213e(413iπ))\displaystyle t = 10 \, \log\left(\frac{1}{9} \cdot 1270^{\frac{1}{13}} 9^{\frac{12}{13}} e^{\left(\frac{4}{13} i \, \pi\right)}\right)
t=10log(19127011391213e(613iπ))\displaystyle t = 10 \, \log\left(\frac{1}{9} \cdot 1270^{\frac{1}{13}} 9^{\frac{12}{13}} e^{\left(\frac{6}{13} i \, \pi\right)}\right)
t=10log(19127011391213e(813iπ))\displaystyle t = 10 \, \log\left(\frac{1}{9} \cdot 1270^{\frac{1}{13}} 9^{\frac{12}{13}} e^{\left(\frac{8}{13} i \, \pi\right)}\right)
t=10log(19127011391213e(1013iπ))\displaystyle t = 10 \, \log\left(\frac{1}{9} \cdot 1270^{\frac{1}{13}} 9^{\frac{12}{13}} e^{\left(\frac{10}{13} i \, \pi\right)}\right)
t=10log(19127011391213e(1213iπ))\displaystyle t = 10 \, \log\left(\frac{1}{9} \cdot 1270^{\frac{1}{13}} 9^{\frac{12}{13}} e^{\left(\frac{12}{13} i \, \pi\right)}\right)
t=12013iπ+10log(19127011391213)\displaystyle t = -\frac{120}{13} i \, \pi + 10 \, \log\left(\frac{1}{9} \cdot 1270^{\frac{1}{13}} 9^{\frac{12}{13}}\right)
t=10013iπ+10log(19127011391213)\displaystyle t = -\frac{100}{13} i \, \pi + 10 \, \log\left(\frac{1}{9} \cdot 1270^{\frac{1}{13}} 9^{\frac{12}{13}}\right)
t=8013iπ+10log(19127011391213)\displaystyle t = -\frac{80}{13} i \, \pi + 10 \, \log\left(\frac{1}{9} \cdot 1270^{\frac{1}{13}} 9^{\frac{12}{13}}\right)
t=6013iπ+10log(19127011391213)\displaystyle t = -\frac{60}{13} i \, \pi + 10 \, \log\left(\frac{1}{9} \cdot 1270^{\frac{1}{13}} 9^{\frac{12}{13}}\right)
t=4013iπ+10log(19127011391213)\displaystyle t = -\frac{40}{13} i \, \pi + 10 \, \log\left(\frac{1}{9} \cdot 1270^{\frac{1}{13}} 9^{\frac{12}{13}}\right)
t=2013iπ+10log(19127011391213)\displaystyle t = -\frac{20}{13} i \, \pi + 10 \, \log\left(\frac{1}{9} \cdot 1270^{\frac{1}{13}} 9^{\frac{12}{13}}\right)
t=10log(19127011391213)\displaystyle t = 10 \, \log\left(\frac{1}{9} \cdot 1270^{\frac{1}{13}} 9^{\frac{12}{13}}\right)
El único tiempo real, es: t =
3.80734430932032\displaystyle 3.80734430932032

Gráfica de D(t) para los valores del inciso a):

# Gráfica de la Ecuación de Streeter - Phelps: L0 = -0.5 k1 = -0.3 k2 = 1 D0 = -5 D(t) = L0*k1/(k2 - k1)*(e^(-k1*t) - e^(-k2*t)) - D0*e^(-k2*t); ## Funcion D(t): D_plot = plot(D(t),(-10,30),ymax=100, ymin=-1) # Valores mínimo: t_min = puntos_criticos[-1].rhs() D_min = D(t_min) print("Min on interval [-10, 30]: f({0}) = {1}".format(n(t_min), n(D_min))) # Gráfica del punto mínimo: min_point = point((t_min, D(t_min)), color='red', size=50) show(D_plot + min_point, figsize=(4, 4))
Min on interval [-10, 30]: f(3.80734430932032) = 0.470049771963661

Reesolvemos para los valores del inciso b)

valores del inciso b):

L0=5L0 = 5
k1=2.6k1 = 2.6
k2=1.2k2 = 1.2
D0=5D0 = 5
## Puntos críticos para el inciso b): L0 = 5 k1 = 2.6 k2 = 1.2 D0 = 5 D(t) = L0*k1/(k2 - k1)*(e^(-k1*t) - e^(-k2*t)) - D0*e^(-k2*t); dDdt(t) = diff(D(t), t); # Igualamos la derivado a cero (dDdt(t) = 0) y resolvemos para "t": puntos_criticos = solve(dDdt(t) == 0, t); print("Los tiempo críticos son: ") for pts in puntos_criticos: show(pts) print("\nEl único tiempo real, es: ") print("\nt = ") t_min = puntos_criticos[-1].rhs() show(n(t_min))
Los tiempo críticos son:
t=5log(136169173667e(27iπ))\displaystyle t = 5 \, \log\left(\frac{1}{36} \cdot 169^{\frac{1}{7}} 36^{\frac{6}{7}} e^{\left(\frac{2}{7} i \, \pi\right)}\right)
t=5log(136169173667e(47iπ))\displaystyle t = 5 \, \log\left(\frac{1}{36} \cdot 169^{\frac{1}{7}} 36^{\frac{6}{7}} e^{\left(\frac{4}{7} i \, \pi\right)}\right)
t=5log(136169173667e(67iπ))\displaystyle t = 5 \, \log\left(\frac{1}{36} \cdot 169^{\frac{1}{7}} 36^{\frac{6}{7}} e^{\left(\frac{6}{7} i \, \pi\right)}\right)
t=307iπ+5log(136169173667)\displaystyle t = -\frac{30}{7} i \, \pi + 5 \, \log\left(\frac{1}{36} \cdot 169^{\frac{1}{7}} 36^{\frac{6}{7}}\right)
t=207iπ+5log(136169173667)\displaystyle t = -\frac{20}{7} i \, \pi + 5 \, \log\left(\frac{1}{36} \cdot 169^{\frac{1}{7}} 36^{\frac{6}{7}}\right)
t=107iπ+5log(136169173667)\displaystyle t = -\frac{10}{7} i \, \pi + 5 \, \log\left(\frac{1}{36} \cdot 169^{\frac{1}{7}} 36^{\frac{6}{7}}\right)
t=5log(136169173667)\displaystyle t = 5 \, \log\left(\frac{1}{36} \cdot 169^{\frac{1}{7}} 36^{\frac{6}{7}}\right)
El único tiempo real, es: t =
1.10455698319069\displaystyle 1.10455698319069

Gráfica de D(t) para los valores del inciso b):

# Gráfica de la Ecuación de Streeter - Phelps: L0 = 5 k1 = 2.6 k2 = 1.2 D0 = 5 D(t) = L0*k1/(k2 - k1)*(e^(-k1*t) - e^(-k2*t)) - D0*e^(-k2*t); ## Funcion D(t): D_plot = plot(D(t),(-5,20),ymax=5, ymin=-20) # Valores mínimo: puntos_criticos = solve(dDdt(t) == 0, t); t_min = puntos_criticos[-1].rhs() D_min = D(t_min) print("Min on interval [-5, 20]: f({0}) = {1}".format(n(t_min), n(D_min))) # Gráfica del punto mínimo: min_point = point((t_min, D(t_min)), color='red', size=50) show(D_plot + min_point, figsize=(4, 4))
Min on interval [-5, 20]: f(1.10455698319069) = 0.613104211144102

Reesolvemos para los valores del inciso c)

valores del inciso c):

L0=5L0 = 5
k1=2.4k1 = 2.4
k2=0.3k2 = 0.3
D0=3D0 = -3
## Puntos críticos para el inciso c): L0 = 5 k1 = 2.4 k2 = 0.3 D0 = -3 D(t) = L0*k1/(k2 - k1)*(e^(-k1*t) - e^(-k2*t)) - D0*e^(-k2*t); dDdt(t) = diff(D(t), t); # Igualamos la derivado a cero (dDdt(t) = 0) y resolvemos para "t": puntos_criticos = solve(dDdt(t) == 0, t); print("Los tiempos críticos son: ") for pts in puntos_criticos: show(pts) ### f = e^(1/5*t) == n(1/61*61^(11/12)*5^(1/12)*sqrt(2))*e^(1/40*t) sol_t = solve([f],t) show(sol_t) ### f1 = e^(1/5*t)/e^(1/40*t) == (8353829)/(7276132) ### f2 = log(e^(7/40*t)) == log((8353829)/(7276132)) ### f3 = t == 40/7*log((8353829)/(7276132)) show(simplify(f3)) ### f4 = t == n(40/7*log((8353829)/(7276132))) print("\nEl único tiempo real, es: ") show(simplify(f4))
Los tiempos críticos son:
e(15t)=11226111122(51123+i5112)e(140t)\displaystyle e^{\left(\frac{1}{5} \, t\right)} = \frac{1}{122} \cdot 61^{\frac{11}{12}} \sqrt{2} {\left(5^{\frac{1}{12}} \sqrt{3} + i \cdot 5^{\frac{1}{12}}\right)} e^{\left(\frac{1}{40} \, t\right)}
e(15t)=11226111122(i51123+5112)e(140t)\displaystyle e^{\left(\frac{1}{5} \, t\right)} = \frac{1}{122} \cdot 61^{\frac{11}{12}} \sqrt{2} {\left(i \cdot 5^{\frac{1}{12}} \sqrt{3} + 5^{\frac{1}{12}}\right)} e^{\left(\frac{1}{40} \, t\right)}
e(15t)=161i61111251122e(140t)\displaystyle e^{\left(\frac{1}{5} \, t\right)} = \frac{1}{61} i \cdot 61^{\frac{11}{12}} 5^{\frac{1}{12}} \sqrt{2} e^{\left(\frac{1}{40} \, t\right)}
e(15t)=11226111122(i511235112)e(140t)\displaystyle e^{\left(\frac{1}{5} \, t\right)} = \frac{1}{122} \cdot 61^{\frac{11}{12}} \sqrt{2} {\left(i \cdot 5^{\frac{1}{12}} \sqrt{3} - 5^{\frac{1}{12}}\right)} e^{\left(\frac{1}{40} \, t\right)}
e(15t)=11226111122(51123i5112)e(140t)\displaystyle e^{\left(\frac{1}{5} \, t\right)} = -\frac{1}{122} \cdot 61^{\frac{11}{12}} \sqrt{2} {\left(5^{\frac{1}{12}} \sqrt{3} - i \cdot 5^{\frac{1}{12}}\right)} e^{\left(\frac{1}{40} \, t\right)}
e(15t)=16161111251122e(140t)\displaystyle e^{\left(\frac{1}{5} \, t\right)} = -\frac{1}{61} \cdot 61^{\frac{11}{12}} 5^{\frac{1}{12}} \sqrt{2} e^{\left(\frac{1}{40} \, t\right)}
e(15t)=11226111122(51123+i5112)e(140t)\displaystyle e^{\left(\frac{1}{5} \, t\right)} = -\frac{1}{122} \cdot 61^{\frac{11}{12}} \sqrt{2} {\left(5^{\frac{1}{12}} \sqrt{3} + i \cdot 5^{\frac{1}{12}}\right)} e^{\left(\frac{1}{40} \, t\right)}
e(15t)=11226111122(i51123+5112)e(140t)\displaystyle e^{\left(\frac{1}{5} \, t\right)} = -\frac{1}{122} \cdot 61^{\frac{11}{12}} \sqrt{2} {\left(i \cdot 5^{\frac{1}{12}} \sqrt{3} + 5^{\frac{1}{12}}\right)} e^{\left(\frac{1}{40} \, t\right)}
e(15t)=161i61111251122e(140t)\displaystyle e^{\left(\frac{1}{5} \, t\right)} = -\frac{1}{61} i \cdot 61^{\frac{11}{12}} 5^{\frac{1}{12}} \sqrt{2} e^{\left(\frac{1}{40} \, t\right)}
e(15t)=11226111122(i511235112)e(140t)\displaystyle e^{\left(\frac{1}{5} \, t\right)} = -\frac{1}{122} \cdot 61^{\frac{11}{12}} \sqrt{2} {\left(i \cdot 5^{\frac{1}{12}} \sqrt{3} - 5^{\frac{1}{12}}\right)} e^{\left(\frac{1}{40} \, t\right)}
e(15t)=11226111122(51123i5112)e(140t)\displaystyle e^{\left(\frac{1}{5} \, t\right)} = \frac{1}{122} \cdot 61^{\frac{11}{12}} \sqrt{2} {\left(5^{\frac{1}{12}} \sqrt{3} - i \cdot 5^{\frac{1}{12}}\right)} e^{\left(\frac{1}{40} \, t\right)}
e(15t)=16161111251122e(140t)\displaystyle e^{\left(\frac{1}{5} \, t\right)} = \frac{1}{61} \cdot 61^{\frac{11}{12}} 5^{\frac{1}{12}} \sqrt{2} e^{\left(\frac{1}{40} \, t\right)}
[e(15t)=83538297276132e(140t)\displaystyle e^{\left(\frac{1}{5} \, t\right)} = \frac{8353829}{7276132} \, e^{\left(\frac{1}{40} \, t\right)}]
t=407log(83538297276132)\displaystyle t = \frac{40}{7} \, \log\left(\frac{8353829}{7276132}\right)
El único tiempo real, es:
t=0.789260538867\displaystyle t = 0.789260538867

Gráfica de D(t) para los valores del inciso c):

# Gráfica de la Ecuación de Streeter - Phelps: L0 = 5 k1 = 2.4 k2 = 0.3 D0 = -3 D(t) = L0*k1/(k2 - k1)*(e^(-k1*t) - e^(-k2*t)) - D0*e^(-k2*t); ## Funcion D(t): D_plot = plot(D(t),(-5,20),ymax=10, ymin=-20) # Valores mínimo: t_min = n(40/7*log((8353829)/(7276132))) D_min = D(t_min) print("Min on interval [-5, 20]: f({0}) = {1}".format(n(t_min), n(D_min))) # Gráfica del punto mínimo: min_point = point((t_min, D(t_min)), color='red', size=50) show(D_plot + min_point, figsize=(4, 4))
Min on interval [-5, 20]: f(0.789260538866877) = 6.01739331162348

Reesolvemos para los valores del inciso d)

valores del inciso c):

L0=1.4L0 = -1.4
k1=0.4k1 = -0.4
k2=0.3k2 = 0.3
D0=3D0 = -3
## Puntos críticos para el inciso d): L0 = -1.4 k1 = -0.4 k2 = 0.3 D0 = -3 D(t) = L0*k1/(k2 - k1)*(e^(-k1*t) - e^(-k2*t)) - D0*e^(-k2*t); dDdt(t) = diff(D(t), t); # Igualamos la derivado a cero (dDdt(t) = 0) y resolvemos para "t": puntos_criticos = solve(dDdt(t) == 0, t); print("Los tiempos críticos son: ") for pts in puntos_criticos: show(pts) print("\nEl único tiempo real, es: ") print("\nt = ") t_min = puntos_criticos[-1].rhs() show(n(t_min))
Los tiempos críticos son:
t=10log(11633171667e(27iπ))\displaystyle t = 10 \, \log\left(\frac{1}{16} \cdot 33^{\frac{1}{7}} 16^{\frac{6}{7}} e^{\left(\frac{2}{7} i \, \pi\right)}\right)
t=10log(11633171667e(47iπ))\displaystyle t = 10 \, \log\left(\frac{1}{16} \cdot 33^{\frac{1}{7}} 16^{\frac{6}{7}} e^{\left(\frac{4}{7} i \, \pi\right)}\right)
t=10log(11633171667e(67iπ))\displaystyle t = 10 \, \log\left(\frac{1}{16} \cdot 33^{\frac{1}{7}} 16^{\frac{6}{7}} e^{\left(\frac{6}{7} i \, \pi\right)}\right)
t=607iπ+10log(11633171667)\displaystyle t = -\frac{60}{7} i \, \pi + 10 \, \log\left(\frac{1}{16} \cdot 33^{\frac{1}{7}} 16^{\frac{6}{7}}\right)
t=407iπ+10log(11633171667)\displaystyle t = -\frac{40}{7} i \, \pi + 10 \, \log\left(\frac{1}{16} \cdot 33^{\frac{1}{7}} 16^{\frac{6}{7}}\right)
t=207iπ+10log(11633171667)\displaystyle t = -\frac{20}{7} i \, \pi + 10 \, \log\left(\frac{1}{16} \cdot 33^{\frac{1}{7}} 16^{\frac{6}{7}}\right)
t=10log(11633171667)\displaystyle t = 10 \, \log\left(\frac{1}{16} \cdot 33^{\frac{1}{7}} 16^{\frac{6}{7}}\right)
El único tiempo real, es: t =
1.03416977032385\displaystyle 1.03416977032385

Gráfica de D(t) para los valores del inciso d):

# Gráfica de la Ecuación de Streeter - Phelps: L0 = -1.4 k1 = -0.4 k2 = 0.3 D0 = -3 D(t) = L0*k1/(k2 - k1)*(e^(-k1*t) - e^(-k2*t)) - D0*e^(-k2*t); ## Funcion D(t): D_plot = plot(D(t),(-20,20),ymax=100, ymin=-20) # Valores mínimo: t_min = n(40/7*log((8353829)/(7276132))) D_min = D(t_min) print("Min on interval [-20, 20]: f({0}) = {1}".format(n(t_min), n(D_min))) # Gráfica del punto mínimo: min_point = point((t_min, D(t_min)), color='red', size=50) show(D_plot + min_point, figsize=(4, 4))
Min on interval [-20, 20]: f(0.789260538866877) = 2.83314562606401