Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
198 views
ubuntu2404
1
% Computational Chemistry LaTeX Template for CoCalc
2
% Optimized for molecular dynamics, quantum chemistry, and drug discovery
3
% Keywords: computational chemistry latex template, molecular dynamics latex, quantum chemistry template
4
% DFT calculations latex, HOMO LUMO latex template, pymol figures latex, gaussian output latex
5
6
\documentclass[11pt,a4paper]{article}
7
8
% Essential packages for computational chemistry manuscripts
9
\usepackage[utf8]{inputenc}
10
\usepackage[T1]{fontenc}
11
\usepackage{amsmath,amssymb,amsfonts}
12
\usepackage{graphicx}
13
\usepackage{xcolor}
14
\usepackage{booktabs}
15
\usepackage{siunitx} % For proper scientific units
16
\usepackage{chemfig} % Chemical structure drawing
17
\usepackage[version=4]{mhchem} % Chemical equations and formulas
18
\usepackage{listings} % Code listings for computational methods
19
\usepackage{subcaption} % Multiple subfigures
20
\usepackage{float} % Better figure placement
21
\usepackage{geometry}
22
\usepackage{hyperref}
23
\usepackage{cleveref}
24
\usepackage{natbib} % Bibliography management
25
26
% PythonTeX for embedded calculations and molecular visualization
27
\usepackage{pythontex}
28
29
% Geometry setup
30
\geometry{margin=2.5cm}
31
32
% Color definitions for molecular representations
33
\definecolor{carboncolor}{RGB}{64,64,64}
34
\definecolor{oxygencolor}{RGB}{255,13,13}
35
\definecolor{nitrogencolor}{RGB}{48,80,248}
36
\definecolor{hydrogencolor}{RGB}{255,255,255}
37
\definecolor{sulfurcolor}{RGB}{255,200,50}
38
39
% siunitx setup for chemistry units
40
\sisetup{
41
per-mode=symbol,
42
detect-all,
43
group-separator={,},
44
group-minimum-digits=4
45
}
46
47
% Hyperref setup
48
\hypersetup{
49
colorlinks=true,
50
linkcolor=blue,
51
filecolor=magenta,
52
urlcolor=cyan,
53
citecolor=green,
54
pdftitle={Computational Chemistry LaTeX Template},
55
pdfauthor={CoCalc Scientific Templates},
56
pdfsubject={Molecular Dynamics, Quantum Chemistry, Drug Discovery},
57
pdfkeywords={computational chemistry, molecular dynamics, quantum chemistry, DFT, HOMO LUMO, drug discovery, gaussian, amber, gromacs, pymol, rdkit}
58
}
59
60
% Custom commands for common chemistry notations
61
\newcommand{\homo}{\text{HOMO}}
62
\newcommand{\lumo}{\text{LUMO}}
63
\newcommand{\dft}{\text{DFT}}
64
\newcommand{\mptwo}{\text{MP2}}
65
\newcommand{\ccsd}{\text{CCSD(T)}}
66
\newcommand{\hartree}{\text{E}_\text{h}}
67
\newcommand{\kcalmol}{\si{\kilo\cal\per\mol}}
68
\newcommand{\kjmol}{\si{\kJ\per\mol}}
69
\DeclareSIUnit\angstrom{\text{\AA}}
70
71
\title{Computational Chemistry Research Template:\\
72
Molecular Dynamics, Quantum Chemistry \& Drug Discovery}
73
74
\author{Your Name\thanks{Department of Chemistry, Institution Name} \\
75
\small \texttt{email@institution.edu}}
76
77
\date{\today}
78
79
\begin{document}
80
81
\maketitle
82
83
\begin{abstract}
84
This computational chemistry template demonstrates advanced molecular modeling techniques including density functional theory (DFT) calculations, molecular dynamics (MD) simulations, and drug discovery applications. The template showcases quantum chemical property predictions, protein-ligand interactions, orbital visualizations, and energy landscape analysis using embedded Python calculations optimized for reproducible research in CoCalc.
85
86
\textbf{Keywords:} computational chemistry, molecular dynamics, quantum chemistry, DFT calculations, HOMO-LUMO gap, drug discovery, gaussian calculations, amber simulations, pymol visualization
87
\end{abstract}
88
89
\section{Introduction}
90
% SEO: computational chemistry latex template, molecular dynamics latex
91
92
Computational chemistry has revolutionized our understanding of molecular systems, enabling researchers to predict chemical properties, design new drugs, and understand complex biological processes at the atomic level. This template provides a comprehensive framework for presenting computational chemistry research, including:
93
94
\begin{itemize}
95
\item Quantum chemical calculations (\dft, \mptwo, \ccsd)
96
\item Molecular dynamics simulations (AMBER, GROMACS, CHARMM)
97
\item Drug discovery and virtual screening
98
\item Protein-ligand interaction analysis
99
\item Molecular visualization and property prediction
100
\end{itemize}
101
102
\section{Computational Methods}
103
% SEO: gaussian output latex template, dft calculations latex
104
105
\subsection{Quantum Chemical Calculations}
106
107
All quantum chemical calculations were performed using Gaussian 16~\cite{gaussian16} at the B3LYP/6-31G(d,p) level of theory. Geometry optimizations were followed by frequency calculations to confirm stationary points.
108
109
\begin{pycode}
110
import numpy as np
111
import matplotlib.pyplot as plt
112
from matplotlib.patches import Circle
113
import seaborn as sns
114
115
# Set style for publication-quality figures
116
plt.style.use('seaborn-v0_8-whitegrid')
117
sns.set_palette("husl")
118
119
# Example: HOMO-LUMO energy gap calculation
120
molecules = ['benzene', 'naphthalene', 'anthracene', 'phenanthrene']
121
homo_energies = np.array([-5.78, -5.42, -5.15, -5.25]) # eV
122
lumo_energies = np.array([-1.23, -2.15, -2.85, -2.45]) # eV
123
gap_energies = homo_energies - lumo_energies
124
125
# Create HOMO-LUMO gap plot
126
fig, ax = plt.subplots(figsize=(10, 6))
127
x_pos = np.arange(len(molecules))
128
129
# Plot HOMO and LUMO levels
130
homo_bars = ax.bar(x_pos - 0.2, homo_energies, 0.4, label='HOMO',
131
color='#FF6B6B', alpha=0.8)
132
lumo_bars = ax.bar(x_pos + 0.2, lumo_energies, 0.4, label='LUMO',
133
color='#4ECDC4', alpha=0.8)
134
135
# Add gap annotations
136
for i, gap in enumerate(gap_energies):
137
ax.annotate(f'{gap:.2f} eV', xy=(i, (homo_energies[i] + lumo_energies[i])/2),
138
ha='center', va='center', fontweight='bold', fontsize=10,
139
bbox=dict(boxstyle='round,pad=0.3', facecolor='white', alpha=0.8))
140
141
ax.set_xlabel('Polycyclic Aromatic Hydrocarbons', fontsize=12, fontweight='bold')
142
ax.set_ylabel('Energy (eV)', fontsize=12, fontweight='bold')
143
ax.set_title('HOMO-LUMO Energy Gaps in PAH Series', fontsize=14, fontweight='bold')
144
ax.set_xticks(x_pos)
145
ax.set_xticklabels(molecules, rotation=45, ha='right')
146
ax.legend(fontsize=11)
147
ax.grid(True, alpha=0.3)
148
149
plt.tight_layout()
150
plt.savefig('assets/homo_lumo_gaps.pdf', dpi=300, bbox_inches='tight')
151
plt.show()
152
153
print(f"Average HOMO-LUMO gap: {np.mean(gap_energies):.2f} ± {np.std(gap_energies):.2f} eV")
154
\end{pycode}
155
156
The \homo-\lumo gap is a crucial parameter for understanding electronic properties and reactivity. As shown in \cref{fig:homo_lumo}, the gap systematically decreases with increasing conjugation length in polycyclic aromatic hydrocarbons.
157
158
\begin{figure}[H]
159
\centering
160
\includegraphics[width=0.8\textwidth]{assets/homo_lumo_gaps.pdf}
161
\caption{HOMO-LUMO energy gaps calculated at the B3LYP/6-31G(d,p) level of theory for polycyclic aromatic hydrocarbons. The systematic decrease in gap energy with increasing molecular size demonstrates the effect of extended conjugation.}
162
\label{fig:homo_lumo}
163
\end{figure}
164
165
\subsection{Molecular Dynamics Simulations}
166
% SEO: amber molecular dynamics latex, protein structure latex
167
168
Molecular dynamics simulations were performed using AMBER 20~\cite{amber20} with the ff19SB force field for proteins and TIP3P water model. The system was equilibrated for \SI{10}{ns} followed by \SI{100}{ns} production runs.
169
170
\begin{pycode}
171
# Generate sample MD analysis data
172
import numpy as np
173
import matplotlib.pyplot as plt
174
175
# Simulate RMSD trajectory data
176
time = np.linspace(0, 100, 1000) # 100 ns simulation
177
np.random.seed(42) # Reproducible results
178
179
# RMSD with equilibration and fluctuations
180
rmsd_protein = 1.5 + 0.8 * (1 - np.exp(-time/10)) + 0.3 * np.random.normal(0, 1, len(time)) * np.exp(-time/50)
181
rmsd_ligand = 2.0 + 1.2 * (1 - np.exp(-time/8)) + 0.5 * np.random.normal(0, 1, len(time)) * np.exp(-time/30)
182
183
# Apply smoothing
184
from scipy.ndimage import gaussian_filter1d
185
rmsd_protein = gaussian_filter1d(rmsd_protein, sigma=2)
186
rmsd_ligand = gaussian_filter1d(rmsd_ligand, sigma=2)
187
188
# Create MD analysis plot
189
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 8), sharex=True)
190
191
# RMSD plot
192
ax1.plot(time, rmsd_protein, linewidth=2, label='Protein Backbone', color='#2E86AB')
193
ax1.plot(time, rmsd_ligand, linewidth=2, label='Ligand Heavy Atoms', color='#A23B72')
194
ax1.set_ylabel('RMSD (Å)', fontsize=12, fontweight='bold')
195
ax1.set_title('Molecular Dynamics Trajectory Analysis', fontsize=14, fontweight='bold')
196
ax1.legend(fontsize=11)
197
ax1.grid(True, alpha=0.3)
198
ax1.set_ylim(0, 4)
199
200
# Energy components
201
potential_energy = -45000 + 2000 * np.sin(time/10) + 500 * np.random.normal(0, 1, len(time))
202
kinetic_energy = 15000 + 1000 * np.sin(time/12 + np.pi/4) + 300 * np.random.normal(0, 1, len(time))
203
204
# Apply smoothing to energies
205
potential_energy = gaussian_filter1d(potential_energy, sigma=3)
206
kinetic_energy = gaussian_filter1d(kinetic_energy, sigma=3)
207
208
ax2.plot(time, potential_energy/1000, linewidth=2, label='Potential Energy', color='#F18F01')
209
ax2.plot(time, kinetic_energy/1000, linewidth=2, label='Kinetic Energy', color='#C73E1D')
210
ax2.set_xlabel('Time (ns)', fontsize=12, fontweight='bold')
211
ax2.set_ylabel('Energy (kcal/mol × 10³)', fontsize=12, fontweight='bold')
212
ax2.legend(fontsize=11)
213
ax2.grid(True, alpha=0.3)
214
215
plt.tight_layout()
216
plt.savefig('assets/md_analysis.pdf', dpi=300, bbox_inches='tight')
217
plt.show()
218
219
# Calculate and print statistics
220
print(f"Final RMSD (protein): {rmsd_protein[-1]:.2f} ± {np.std(rmsd_protein[-100:]):.2f} Å")
221
print(f"Final RMSD (ligand): {rmsd_ligand[-1]:.2f} ± {np.std(rmsd_ligand[-100:]):.2f} Å")
222
print(f"Average potential energy: {np.mean(potential_energy)/1000:.1f} kcal/mol")
223
\end{pycode}
224
225
\begin{figure}[H]
226
\centering
227
\includegraphics[width=0.9\textwidth]{assets/md_analysis.pdf}
228
\caption{Molecular dynamics trajectory analysis showing (top) root-mean-square deviation (RMSD) of protein backbone and ligand heavy atoms, and (bottom) potential and kinetic energy components over a \SI{100}{ns} simulation period.}
229
\label{fig:md_analysis}
230
\end{figure}
231
232
\section{Drug Discovery Applications}
233
% SEO: drug discovery latex template, virtual screening results
234
235
\subsection{Virtual Screening and Docking Analysis}
236
237
High-throughput virtual screening was performed against a library of \num{10000} drug-like compounds using AutoDock Vina~\cite{vina}. The binding affinities and poses were analyzed for structure-activity relationships.
238
239
\begin{pycode}
240
# Generate virtual screening results
241
import matplotlib.pyplot as plt
242
import numpy as np
243
244
np.random.seed(123)
245
n_compounds = 1000
246
247
# Generate docking scores with realistic distribution
248
binding_affinities = np.random.gamma(2, 2, n_compounds) * -1 - 4 # Gamma distribution for realistic scores
249
binding_affinities = np.clip(binding_affinities, -12, -4) # Realistic range
250
251
# Create a subset of high-affinity compounds
252
high_affinity_indices = np.where(binding_affinities < -8)[0]
253
n_hits = len(high_affinity_indices)
254
255
# Generate ADMET properties for top hits
256
lipophilicity = np.random.normal(3.5, 1.2, n_hits) # LogP
257
molecular_weight = np.random.normal(350, 80, n_hits) # Da
258
polar_surface_area = np.random.normal(70, 25, n_hits) # Ų
259
260
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(14, 10))
261
262
# Docking score distribution
263
ax1.hist(binding_affinities, bins=50, alpha=0.7, color='#6A994E', edgecolor='black', linewidth=0.5)
264
ax1.axvline(x=-8, color='red', linestyle='--', linewidth=2, label='Hit Threshold')
265
ax1.set_xlabel('Binding Affinity (kcal/mol)', fontweight='bold')
266
ax1.set_ylabel('Number of Compounds', fontweight='bold')
267
ax1.set_title('Virtual Screening Results Distribution', fontweight='bold')
268
ax1.legend()
269
ax1.grid(True, alpha=0.3)
270
271
# ADMET analysis - Lipophilicity vs Molecular Weight
272
scatter = ax2.scatter(molecular_weight, lipophilicity, c=binding_affinities[high_affinity_indices],
273
cmap='viridis_r', alpha=0.7, s=60, edgecolors='black', linewidth=0.5)
274
ax2.set_xlabel('Molecular Weight (Da)', fontweight='bold')
275
ax2.set_ylabel('Lipophilicity (LogP)', fontweight='bold')
276
ax2.set_title('ADMET Properties of High-Affinity Hits', fontweight='bold')
277
ax2.grid(True, alpha=0.3)
278
cbar = plt.colorbar(scatter, ax=ax2)
279
cbar.set_label('Binding Affinity (kcal/mol)', fontweight='bold')
280
281
# Rule of Five compliance
282
ro5_compliant = ((molecular_weight <= 500) &
283
(lipophilicity <= 5) &
284
(polar_surface_area <= 140))
285
286
labels = ['Compliant', 'Non-Compliant']
287
sizes = [np.sum(ro5_compliant), np.sum(~ro5_compliant)]
288
colors = ['#A8DADC', '#E63946']
289
290
ax3.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=90)
291
ax3.set_title('Lipinski Rule of Five Compliance', fontweight='bold')
292
293
# SAR analysis - Structure-Activity Relationship
294
pharmacophore_features = np.random.poisson(3, n_hits) # Number of pharmacophore features
295
ax4.scatter(pharmacophore_features, binding_affinities[high_affinity_indices],
296
alpha=0.7, s=60, color='#F77F00', edgecolors='black', linewidth=0.5)
297
ax4.set_xlabel('Number of Pharmacophore Features', fontweight='bold')
298
ax4.set_ylabel('Binding Affinity (kcal/mol)', fontweight='bold')
299
ax4.set_title('Structure-Activity Relationship', fontweight='bold')
300
ax4.grid(True, alpha=0.3)
301
302
# Add trendline
303
z = np.polyfit(pharmacophore_features, binding_affinities[high_affinity_indices], 1)
304
p = np.poly1d(z)
305
ax4.plot(sorted(pharmacophore_features), p(sorted(pharmacophore_features)),
306
"r--", alpha=0.8, linewidth=2)
307
308
plt.tight_layout()
309
plt.savefig('assets/virtual_screening.pdf', dpi=300, bbox_inches='tight')
310
plt.show()
311
312
print(f"Total compounds screened: {len(binding_affinities):,}")
313
print(f"Hits identified ( -8 kcal/mol): {n_hits}")
314
print(f"Hit rate: {(n_hits/len(binding_affinities)*100):.1f}%")
315
print(f"Rule of Five compliance: {np.sum(ro5_compliant)}/{n_hits} ({np.sum(ro5_compliant)/n_hits*100:.1f}%)")
316
\end{pycode}
317
318
\begin{figure}[H]
319
\centering
320
\includegraphics[width=0.95\textwidth]{assets/virtual_screening.pdf}
321
\caption{Virtual screening analysis: (a) Distribution of binding affinities from molecular docking, (b) ADMET properties correlation for high-affinity hits, (c) Lipinski Rule of Five compliance, and (d) Structure-activity relationship analysis.}
322
\label{fig:virtual_screening}
323
\end{figure}
324
325
\subsection{Protein-Ligand Interaction Analysis}
326
% SEO: protein structure latex, solvation energy latex
327
328
The protein-ligand interactions were analyzed using hydrogen bonding, hydrophobic contacts, and electrostatic interactions. Key binding residues were identified through interaction frequency analysis.
329
330
\begin{pycode}
331
# Analyze protein-ligand interactions
332
import matplotlib.pyplot as plt
333
import numpy as np
334
335
# Simulation data for interaction analysis
336
residue_names = ['GLU123', 'ARG156', 'TYR189', 'PHE234', 'ASP267', 'LYS301', 'TRP345', 'HIS378']
337
hydrogen_bonds = np.array([85, 72, 45, 12, 78, 56, 23, 89]) # % occupancy
338
hydrophobic_contacts = np.array([23, 45, 89, 92, 34, 67, 95, 56]) # % occupancy
339
electrostatic = np.array([78, 89, 12, 5, 82, 76, 15, 67]) # % occupancy
340
341
# Create interaction heatmap
342
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
343
344
# Interaction frequency heatmap
345
interaction_data = np.array([hydrogen_bonds, hydrophobic_contacts, electrostatic])
346
interaction_types = ['H-bonds', 'Hydrophobic', 'Electrostatic']
347
348
im = ax1.imshow(interaction_data, cmap='YlOrRd', aspect='auto', vmin=0, vmax=100)
349
ax1.set_xticks(range(len(residue_names)))
350
ax1.set_xticklabels(residue_names, rotation=45, ha='right')
351
ax1.set_yticks(range(len(interaction_types)))
352
ax1.set_yticklabels(interaction_types)
353
ax1.set_title('Protein-Ligand Interaction Frequencies (%)', fontweight='bold', fontsize=12)
354
355
# Add percentage labels
356
for i in range(len(interaction_types)):
357
for j in range(len(residue_names)):
358
text = ax1.text(j, i, f'{interaction_data[i, j]:.0f}%',
359
ha="center", va="center", color="black" if interaction_data[i, j] < 50 else "white",
360
fontweight='bold', fontsize=9)
361
362
cbar1 = plt.colorbar(im, ax=ax1, shrink=0.8)
363
cbar1.set_label('Interaction Frequency (%)', fontweight='bold')
364
365
# Binding energy decomposition
366
residue_contributions = -(hydrogen_bonds * 0.05 + hydrophobic_contacts * 0.03 + electrostatic * 0.04)
367
total_binding_energy = np.sum(residue_contributions)
368
369
bars = ax2.bar(range(len(residue_names)), residue_contributions,
370
color=['#E74C3C', '#3498DB', '#2ECC71', '#F39C12', '#9B59B6', '#1ABC9C', '#E67E22', '#34495E'])
371
ax2.set_xlabel('Binding Site Residues', fontweight='bold')
372
ax2.set_ylabel('Energy Contribution (kcal/mol)', fontweight='bold')
373
ax2.set_title('Per-Residue Binding Energy Decomposition', fontweight='bold')
374
ax2.set_xticks(range(len(residue_names)))
375
ax2.set_xticklabels(residue_names, rotation=45, ha='right')
376
ax2.grid(True, alpha=0.3, axis='y')
377
378
# Add value labels on bars
379
for i, v in enumerate(residue_contributions):
380
ax2.text(i, v - 0.1, f'{v:.1f}', ha='center', va='top', fontweight='bold', fontsize=9)
381
382
plt.tight_layout()
383
plt.savefig('assets/protein_ligand_interactions.pdf', dpi=300, bbox_inches='tight')
384
plt.show()
385
386
print(f"Total calculated binding energy: {total_binding_energy:.1f} kcal/mol")
387
print(f"Most important residue: {residue_names[np.argmin(residue_contributions)]} ({residue_contributions[np.argmin(residue_contributions)]:.1f} kcal/mol)")
388
\end{pycode}
389
390
\begin{figure}[H]
391
\centering
392
\includegraphics[width=0.95\textwidth]{assets/protein_ligand_interactions.pdf}
393
\caption{Protein-ligand interaction analysis: (left) Interaction frequency heatmap showing hydrogen bonding, hydrophobic contacts, and electrostatic interactions for key binding site residues, and (right) per-residue binding energy decomposition calculated from interaction frequencies.}
394
\label{fig:protein_interactions}
395
\end{figure}
396
397
\section{Chemical Reactions and Mechanisms}
398
% SEO: reaction pathway latex, transition state searches
399
400
\subsection{Reaction Pathway Analysis}
401
402
The reaction mechanism was investigated using transition state theory and intrinsic reaction coordinate (IRC) calculations. The energy profile reveals the rate-determining step and intermediate stability.
403
404
\begin{pycode}
405
# Generate reaction pathway energy profile
406
import matplotlib.pyplot as plt
407
import numpy as np
408
409
# Reaction coordinate and energies (in kcal/mol)
410
reaction_coord = np.array([0, 1, 2, 3, 4, 5, 6])
411
energies = np.array([0, 12.5, 25.8, 18.3, 22.1, 8.5, -15.2]) # Reactants to products
412
413
# Labels for reaction steps
414
step_labels = ['Reactants', 'TS1', 'Int1', 'TS2', 'Int2', 'TS3', 'Products']
415
416
fig, ax = plt.subplots(figsize=(12, 8))
417
418
# Plot energy profile
419
ax.plot(reaction_coord, energies, 'o-', linewidth=3, markersize=8, color='#2E86AB')
420
421
# Fill areas to highlight energy barriers
422
for i in range(len(reaction_coord)-1):
423
if 'TS' in step_labels[i] or 'TS' in step_labels[i+1]:
424
ax.fill_between(reaction_coord[i:i+2], energies[i:i+2], alpha=0.3, color='red')
425
else:
426
ax.fill_between(reaction_coord[i:i+2], energies[i:i+2], alpha=0.3, color='lightblue')
427
428
# Add energy labels
429
for i, (x, y) in enumerate(zip(reaction_coord, energies)):
430
ax.annotate(f'{y:.1f}', xy=(x, y), xytext=(0, 15),
431
textcoords='offset points', ha='center', fontweight='bold',
432
bbox=dict(boxstyle='round,pad=0.3', facecolor='white', alpha=0.8))
433
434
# Customize plot
435
ax.set_xlabel('Reaction Coordinate', fontsize=14, fontweight='bold')
436
ax.set_ylabel('Relative Energy (kcal/mol)', fontsize=14, fontweight='bold')
437
ax.set_title('Reaction Energy Profile: Diels-Alder Cycloaddition', fontsize=16, fontweight='bold')
438
ax.set_xticks(reaction_coord)
439
ax.set_xticklabels(step_labels, rotation=45, ha='right')
440
ax.grid(True, alpha=0.3)
441
ax.axhline(y=0, color='black', linestyle='--', alpha=0.5)
442
443
# Add reaction scheme using chemical equations
444
reaction_text = r'$\mathrm{C_4H_6 + C_2H_4 \rightarrow C_6H_{10}}$'
445
ax.text(0.02, 0.98, reaction_text, transform=ax.transAxes, fontsize=14,
446
verticalalignment='top', bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.8))
447
448
plt.tight_layout()
449
plt.savefig('assets/reaction_pathway.pdf', dpi=300, bbox_inches='tight')
450
plt.show()
451
452
# Calculate thermodynamic and kinetic parameters
453
activation_energy = max(energies) - energies[0]
454
reaction_energy = energies[-1] - energies[0]
455
456
print(f"Activation energy (forward): {activation_energy:.1f} kcal/mol")
457
print(f"Reaction energy: {reaction_energy:.1f} kcal/mol")
458
print(f"Rate-determining step: {step_labels[np.argmax(energies)]} ({max(energies):.1f} kcal/mol)")
459
\end{pycode}
460
461
\begin{figure}[H]
462
\centering
463
\includegraphics[width=0.85\textwidth]{assets/reaction_pathway.pdf}
464
\caption{Reaction energy profile for the Diels-Alder cycloaddition calculated at the B3LYP/6-31G(d,p) level. Transition states (TS) and intermediates (Int) are labeled with their relative energies. The reaction is thermodynamically favorable with $\Delta E = \SI{-15.2}{\kcalmol}$.}
465
\label{fig:reaction_pathway}
466
\end{figure}
467
468
\subsection{Molecular Orbital Analysis}
469
470
The frontier molecular orbitals (\homo\ and \lumo) control the reactivity and electronic properties. The orbital energies and symmetries determine the feasibility of chemical reactions.
471
472
\begin{pycode}
473
# Create molecular orbital energy diagram
474
import matplotlib.pyplot as plt
475
import numpy as np
476
477
fig, ax = plt.subplots(figsize=(10, 8))
478
479
# Molecular orbital energies (eV) for reactants and product
480
reactant1_orbitals = [-8.2, -7.1, -6.8, -5.9, -5.2, -1.8, -0.9, 0.3, 1.2] # Diene
481
reactant2_orbitals = [-9.1, -8.3, -6.2, -2.1, 0.8, 1.5, 2.3] # Dienophile
482
product_orbitals = [-9.8, -8.9, -7.8, -7.2, -6.5, -5.8, -5.1, -2.5, -1.9, -0.8, 0.5, 1.4, 2.1]
483
484
# Plot energy levels
485
x_positions = [1, 3, 5]
486
x_labels = ['Diene\n(C₄H)', 'Dienophile\n(C₂H)', 'Product\n(C₆H)']
487
488
# Draw energy levels
489
for i, orbitals in enumerate([reactant1_orbitals, reactant2_orbitals, product_orbitals]):
490
x = x_positions[i]
491
for j, energy in enumerate(orbitals):
492
line_color = 'red' if energy > 0 else 'blue' # LUMO vs HOMO
493
line_width = 3 if abs(energy) < 2.5 else 2 # Highlight frontier orbitals
494
ax.hlines(energy, x-0.3, x+0.3, colors=line_color, linewidth=line_width)
495
496
# Label HOMO and LUMO
497
if i < 2: # Only for reactants
498
if energy == max([e for e in orbitals if e < 0]): # HOMO
499
ax.text(x+0.4, energy, 'HOMO', fontsize=10, fontweight='bold', va='center')
500
elif energy == min([e for e in orbitals if e > 0]): # LUMO
501
ax.text(x+0.4, energy, 'LUMO', fontsize=10, fontweight='bold', va='center')
502
503
# Add arrows showing orbital interactions
504
ax.annotate('', xy=(2.7, -1.8), xytext=(1.3, -5.2), # HOMO-LUMO interaction
505
arrowprops=dict(arrowstyle='<->', color='green', lw=2))
506
ax.text(2, -3.5, 'HOMO-LUMO\nInteraction', ha='center', fontsize=10,
507
color='green', fontweight='bold')
508
509
# Customize plot
510
ax.set_xlim(0, 6)
511
ax.set_ylim(-12, 3)
512
ax.set_ylabel('Energy (eV)', fontsize=14, fontweight='bold')
513
ax.set_title('Molecular Orbital Energy Diagram: Diels-Alder Reaction', fontsize=16, fontweight='bold')
514
ax.set_xticks(x_positions)
515
ax.set_xticklabels(x_labels, fontsize=12, fontweight='bold')
516
517
# Add energy scale
518
ax.axhline(y=0, color='black', linestyle='--', alpha=0.5, linewidth=1)
519
ax.text(5.5, 0.2, 'Vacuum Level', fontsize=10, ha='right')
520
521
# Add legend
522
ax.plot([], [], 'r-', linewidth=3, label='LUMO (unoccupied)')
523
ax.plot([], [], 'b-', linewidth=3, label='HOMO (occupied)')
524
ax.legend(loc='upper right', fontsize=11)
525
526
plt.tight_layout()
527
plt.savefig('assets/molecular_orbitals.pdf', dpi=300, bbox_inches='tight')
528
plt.show()
529
530
# Calculate orbital gap
531
diene_gap = min([e for e in reactant1_orbitals if e > 0]) - max([e for e in reactant1_orbitals if e < 0])
532
dienophile_gap = min([e for e in reactant2_orbitals if e > 0]) - max([e for e in reactant2_orbitals if e < 0])
533
534
print(f"Diene HOMO-LUMO gap: {diene_gap:.1f} eV")
535
print(f"Dienophile HOMO-LUMO gap: {dienophile_gap:.1f} eV")
536
\end{pycode}
537
538
\begin{figure}[H]
539
\centering
540
\includegraphics[width=0.85\textwidth]{assets/molecular_orbitals.pdf}
541
\caption{Molecular orbital energy diagram for the Diels-Alder cycloaddition showing the frontier orbital interactions between diene and dienophile. The HOMO-LUMO gap determines the activation energy and reaction feasibility.}
542
\label{fig:molecular_orbitals}
543
\end{figure}
544
545
\section{Results and Discussion}
546
547
\subsection{Quantum Chemical Properties}
548
549
The calculated properties demonstrate excellent agreement with experimental values where available. The \dft\ calculations predict:
550
551
\begin{itemize}
552
\item \homo-\lumo\ gaps ranging from \SIrange{3.5}{4.8}{\eV} for the aromatic series
553
\item Binding energies of \SIrange{-8.5}{-12.3}{\kcalmol} for high-affinity ligands
554
\item Activation barriers of \SI{25.8}{\kcalmol} for the cycloaddition reaction
555
\end{itemize}
556
557
\subsection{Molecular Dynamics Insights}
558
559
The MD simulations reveal stable protein-ligand complexes with average RMSD values below \SI{2.5}{\angstrom}. Key findings include:
560
561
\begin{enumerate}
562
\item Hydrogen bonding dominates binding affinity (GLU123, HIS378)
563
\item Hydrophobic interactions provide selectivity (PHE234, TRP345)
564
\item Electrostatic complementarity stabilizes the complex
565
\end{enumerate}
566
567
\subsection{Drug Design Implications}
568
569
The virtual screening identified promising lead compounds with:
570
\begin{itemize}
571
\item High binding affinity ($\leq$ \SI{-8}{\kcalmol})
572
\item Favorable ADMET properties
573
\item Good Lipinski Rule of Five compliance (\SI{78}{\percent})
574
\end{itemize}
575
576
\section{Computational Details}
577
578
\begin{table}[H]
579
\centering
580
\caption{Summary of computational methods and software used.}
581
\label{tab:computational_methods}
582
\begin{tabular}{@{}lll@{}}
583
\toprule
584
\textbf{Method} & \textbf{Software} & \textbf{Key Parameters} \\
585
\midrule
586
DFT Calculations & Gaussian 16 & B3LYP/6-31G(d,p), Freq \\
587
MD Simulations & AMBER 20 & ff19SB, TIP3P, 100 ns \\
588
Molecular Docking & AutoDock Vina & Exhaustiveness = 8 \\
589
Virtual Screening & Schrödinger Suite & HTVS, SP, XP protocols \\
590
Visualization & PyMOL, VMD & Ray tracing, publication quality \\
591
Analysis & Python/NumPy & matplotlib, seaborn, scipy \\
592
\bottomrule
593
\end{tabular}
594
\end{table}
595
596
\section{Conclusion}
597
598
This computational chemistry template demonstrates the integration of quantum chemical calculations, molecular dynamics simulations, and drug discovery applications. The reproducible workflows and embedded calculations enable transparent and verifiable research outcomes.
599
600
Future extensions could include:
601
\begin{itemize}
602
\item Machine learning property prediction
603
\item Free energy perturbation calculations
604
\item QM/MM hybrid methods
605
\item Enhanced sampling techniques
606
\end{itemize}
607
608
\section*{Data and Code Availability}
609
610
All calculation inputs, outputs, and analysis scripts are available in the project repository. The embedded Python code ensures full reproducibility of results and figures.
611
612
\bibliographystyle{unsrt}
613
\begin{thebibliography}{99}
614
615
\bibitem{gaussian16}
616
M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al.,
617
\textit{Gaussian 16, Revision C.01},
618
Gaussian, Inc., Wallingford CT, 2016.
619
620
\bibitem{amber20}
621
D.A. Case, H.M. Aktulga, K. Belfon, et al.,
622
\textit{AMBER 2020},
623
University of California, San Francisco, 2020.
624
625
\bibitem{vina}
626
O. Trott and A. J. Olson,
627
\textit{AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading},
628
J. Comput. Chem. \textbf{31}, 455-461 (2010).
629
630
\end{thebibliography}
631
632
\end{document}
633