ubuntu2404
% Computational Chemistry LaTeX Template for CoCalc1% Optimized for molecular dynamics, quantum chemistry, and drug discovery2% Keywords: computational chemistry latex template, molecular dynamics latex, quantum chemistry template3% DFT calculations latex, HOMO LUMO latex template, pymol figures latex, gaussian output latex45\documentclass[11pt,a4paper]{article}67% Essential packages for computational chemistry manuscripts8\usepackage[utf8]{inputenc}9\usepackage[T1]{fontenc}10\usepackage{amsmath,amssymb,amsfonts}11\usepackage{graphicx}12\usepackage{xcolor}13\usepackage{booktabs}14\usepackage{siunitx} % For proper scientific units15\usepackage{chemfig} % Chemical structure drawing16\usepackage[version=4]{mhchem} % Chemical equations and formulas17\usepackage{listings} % Code listings for computational methods18\usepackage{subcaption} % Multiple subfigures19\usepackage{float} % Better figure placement20\usepackage{geometry}21\usepackage{hyperref}22\usepackage{cleveref}23\usepackage{natbib} % Bibliography management2425% PythonTeX for embedded calculations and molecular visualization26\usepackage{pythontex}2728% Geometry setup29\geometry{margin=2.5cm}3031% Color definitions for molecular representations32\definecolor{carboncolor}{RGB}{64,64,64}33\definecolor{oxygencolor}{RGB}{255,13,13}34\definecolor{nitrogencolor}{RGB}{48,80,248}35\definecolor{hydrogencolor}{RGB}{255,255,255}36\definecolor{sulfurcolor}{RGB}{255,200,50}3738% siunitx setup for chemistry units39\sisetup{40per-mode=symbol,41detect-all,42group-separator={,},43group-minimum-digits=444}4546% Hyperref setup47\hypersetup{48colorlinks=true,49linkcolor=blue,50filecolor=magenta,51urlcolor=cyan,52citecolor=green,53pdftitle={Computational Chemistry LaTeX Template},54pdfauthor={CoCalc Scientific Templates},55pdfsubject={Molecular Dynamics, Quantum Chemistry, Drug Discovery},56pdfkeywords={computational chemistry, molecular dynamics, quantum chemistry, DFT, HOMO LUMO, drug discovery, gaussian, amber, gromacs, pymol, rdkit}57}5859% Custom commands for common chemistry notations60\newcommand{\homo}{\text{HOMO}}61\newcommand{\lumo}{\text{LUMO}}62\newcommand{\dft}{\text{DFT}}63\newcommand{\mptwo}{\text{MP2}}64\newcommand{\ccsd}{\text{CCSD(T)}}65\newcommand{\hartree}{\text{E}_\text{h}}66\newcommand{\kcalmol}{\si{\kilo\cal\per\mol}}67\newcommand{\kjmol}{\si{\kJ\per\mol}}68\DeclareSIUnit\angstrom{\text{\AA}}6970\title{Computational Chemistry Research Template:\\71Molecular Dynamics, Quantum Chemistry \& Drug Discovery}7273\author{Your Name\thanks{Department of Chemistry, Institution Name} \\74\small \texttt{email@institution.edu}}7576\date{\today}7778\begin{document}7980\maketitle8182\begin{abstract}83This computational chemistry template demonstrates advanced molecular modeling techniques including density functional theory (DFT) calculations, molecular dynamics (MD) simulations, and drug discovery applications. The template showcases quantum chemical property predictions, protein-ligand interactions, orbital visualizations, and energy landscape analysis using embedded Python calculations optimized for reproducible research in CoCalc.8485\textbf{Keywords:} computational chemistry, molecular dynamics, quantum chemistry, DFT calculations, HOMO-LUMO gap, drug discovery, gaussian calculations, amber simulations, pymol visualization86\end{abstract}8788\section{Introduction}89% SEO: computational chemistry latex template, molecular dynamics latex9091Computational chemistry has revolutionized our understanding of molecular systems, enabling researchers to predict chemical properties, design new drugs, and understand complex biological processes at the atomic level. This template provides a comprehensive framework for presenting computational chemistry research, including:9293\begin{itemize}94\item Quantum chemical calculations (\dft, \mptwo, \ccsd)95\item Molecular dynamics simulations (AMBER, GROMACS, CHARMM)96\item Drug discovery and virtual screening97\item Protein-ligand interaction analysis98\item Molecular visualization and property prediction99\end{itemize}100101\section{Computational Methods}102% SEO: gaussian output latex template, dft calculations latex103104\subsection{Quantum Chemical Calculations}105106All quantum chemical calculations were performed using Gaussian 16~\cite{gaussian16} at the B3LYP/6-31G(d,p) level of theory. Geometry optimizations were followed by frequency calculations to confirm stationary points.107108\begin{pycode}109import numpy as np110import matplotlib.pyplot as plt111from matplotlib.patches import Circle112import seaborn as sns113114# Set style for publication-quality figures115plt.style.use('seaborn-v0_8-whitegrid')116sns.set_palette("husl")117118# Example: HOMO-LUMO energy gap calculation119molecules = ['benzene', 'naphthalene', 'anthracene', 'phenanthrene']120homo_energies = np.array([-5.78, -5.42, -5.15, -5.25]) # eV121lumo_energies = np.array([-1.23, -2.15, -2.85, -2.45]) # eV122gap_energies = homo_energies - lumo_energies123124# Create HOMO-LUMO gap plot125fig, ax = plt.subplots(figsize=(10, 6))126x_pos = np.arange(len(molecules))127128# Plot HOMO and LUMO levels129homo_bars = ax.bar(x_pos - 0.2, homo_energies, 0.4, label='HOMO',130color='#FF6B6B', alpha=0.8)131lumo_bars = ax.bar(x_pos + 0.2, lumo_energies, 0.4, label='LUMO',132color='#4ECDC4', alpha=0.8)133134# Add gap annotations135for i, gap in enumerate(gap_energies):136ax.annotate(f'{gap:.2f} eV', xy=(i, (homo_energies[i] + lumo_energies[i])/2),137ha='center', va='center', fontweight='bold', fontsize=10,138bbox=dict(boxstyle='round,pad=0.3', facecolor='white', alpha=0.8))139140ax.set_xlabel('Polycyclic Aromatic Hydrocarbons', fontsize=12, fontweight='bold')141ax.set_ylabel('Energy (eV)', fontsize=12, fontweight='bold')142ax.set_title('HOMO-LUMO Energy Gaps in PAH Series', fontsize=14, fontweight='bold')143ax.set_xticks(x_pos)144ax.set_xticklabels(molecules, rotation=45, ha='right')145ax.legend(fontsize=11)146ax.grid(True, alpha=0.3)147148plt.tight_layout()149plt.savefig('assets/homo_lumo_gaps.pdf', dpi=300, bbox_inches='tight')150plt.show()151152print(f"Average HOMO-LUMO gap: {np.mean(gap_energies):.2f} ± {np.std(gap_energies):.2f} eV")153\end{pycode}154155The \homo-\lumo gap is a crucial parameter for understanding electronic properties and reactivity. As shown in \cref{fig:homo_lumo}, the gap systematically decreases with increasing conjugation length in polycyclic aromatic hydrocarbons.156157\begin{figure}[H]158\centering159\includegraphics[width=0.8\textwidth]{assets/homo_lumo_gaps.pdf}160\caption{HOMO-LUMO energy gaps calculated at the B3LYP/6-31G(d,p) level of theory for polycyclic aromatic hydrocarbons. The systematic decrease in gap energy with increasing molecular size demonstrates the effect of extended conjugation.}161\label{fig:homo_lumo}162\end{figure}163164\subsection{Molecular Dynamics Simulations}165% SEO: amber molecular dynamics latex, protein structure latex166167Molecular dynamics simulations were performed using AMBER 20~\cite{amber20} with the ff19SB force field for proteins and TIP3P water model. The system was equilibrated for \SI{10}{ns} followed by \SI{100}{ns} production runs.168169\begin{pycode}170# Generate sample MD analysis data171import numpy as np172import matplotlib.pyplot as plt173174# Simulate RMSD trajectory data175time = np.linspace(0, 100, 1000) # 100 ns simulation176np.random.seed(42) # Reproducible results177178# RMSD with equilibration and fluctuations179rmsd_protein = 1.5 + 0.8 * (1 - np.exp(-time/10)) + 0.3 * np.random.normal(0, 1, len(time)) * np.exp(-time/50)180rmsd_ligand = 2.0 + 1.2 * (1 - np.exp(-time/8)) + 0.5 * np.random.normal(0, 1, len(time)) * np.exp(-time/30)181182# Apply smoothing183from scipy.ndimage import gaussian_filter1d184rmsd_protein = gaussian_filter1d(rmsd_protein, sigma=2)185rmsd_ligand = gaussian_filter1d(rmsd_ligand, sigma=2)186187# Create MD analysis plot188fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 8), sharex=True)189190# RMSD plot191ax1.plot(time, rmsd_protein, linewidth=2, label='Protein Backbone', color='#2E86AB')192ax1.plot(time, rmsd_ligand, linewidth=2, label='Ligand Heavy Atoms', color='#A23B72')193ax1.set_ylabel('RMSD (Å)', fontsize=12, fontweight='bold')194ax1.set_title('Molecular Dynamics Trajectory Analysis', fontsize=14, fontweight='bold')195ax1.legend(fontsize=11)196ax1.grid(True, alpha=0.3)197ax1.set_ylim(0, 4)198199# Energy components200potential_energy = -45000 + 2000 * np.sin(time/10) + 500 * np.random.normal(0, 1, len(time))201kinetic_energy = 15000 + 1000 * np.sin(time/12 + np.pi/4) + 300 * np.random.normal(0, 1, len(time))202203# Apply smoothing to energies204potential_energy = gaussian_filter1d(potential_energy, sigma=3)205kinetic_energy = gaussian_filter1d(kinetic_energy, sigma=3)206207ax2.plot(time, potential_energy/1000, linewidth=2, label='Potential Energy', color='#F18F01')208ax2.plot(time, kinetic_energy/1000, linewidth=2, label='Kinetic Energy', color='#C73E1D')209ax2.set_xlabel('Time (ns)', fontsize=12, fontweight='bold')210ax2.set_ylabel('Energy (kcal/mol × 10³)', fontsize=12, fontweight='bold')211ax2.legend(fontsize=11)212ax2.grid(True, alpha=0.3)213214plt.tight_layout()215plt.savefig('assets/md_analysis.pdf', dpi=300, bbox_inches='tight')216plt.show()217218# Calculate and print statistics219print(f"Final RMSD (protein): {rmsd_protein[-1]:.2f} ± {np.std(rmsd_protein[-100:]):.2f} Å")220print(f"Final RMSD (ligand): {rmsd_ligand[-1]:.2f} ± {np.std(rmsd_ligand[-100:]):.2f} Å")221print(f"Average potential energy: {np.mean(potential_energy)/1000:.1f} kcal/mol")222\end{pycode}223224\begin{figure}[H]225\centering226\includegraphics[width=0.9\textwidth]{assets/md_analysis.pdf}227\caption{Molecular dynamics trajectory analysis showing (top) root-mean-square deviation (RMSD) of protein backbone and ligand heavy atoms, and (bottom) potential and kinetic energy components over a \SI{100}{ns} simulation period.}228\label{fig:md_analysis}229\end{figure}230231\section{Drug Discovery Applications}232% SEO: drug discovery latex template, virtual screening results233234\subsection{Virtual Screening and Docking Analysis}235236High-throughput virtual screening was performed against a library of \num{10000} drug-like compounds using AutoDock Vina~\cite{vina}. The binding affinities and poses were analyzed for structure-activity relationships.237238\begin{pycode}239# Generate virtual screening results240import matplotlib.pyplot as plt241import numpy as np242243np.random.seed(123)244n_compounds = 1000245246# Generate docking scores with realistic distribution247binding_affinities = np.random.gamma(2, 2, n_compounds) * -1 - 4 # Gamma distribution for realistic scores248binding_affinities = np.clip(binding_affinities, -12, -4) # Realistic range249250# Create a subset of high-affinity compounds251high_affinity_indices = np.where(binding_affinities < -8)[0]252n_hits = len(high_affinity_indices)253254# Generate ADMET properties for top hits255lipophilicity = np.random.normal(3.5, 1.2, n_hits) # LogP256molecular_weight = np.random.normal(350, 80, n_hits) # Da257polar_surface_area = np.random.normal(70, 25, n_hits) # Ų258259fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(14, 10))260261# Docking score distribution262ax1.hist(binding_affinities, bins=50, alpha=0.7, color='#6A994E', edgecolor='black', linewidth=0.5)263ax1.axvline(x=-8, color='red', linestyle='--', linewidth=2, label='Hit Threshold')264ax1.set_xlabel('Binding Affinity (kcal/mol)', fontweight='bold')265ax1.set_ylabel('Number of Compounds', fontweight='bold')266ax1.set_title('Virtual Screening Results Distribution', fontweight='bold')267ax1.legend()268ax1.grid(True, alpha=0.3)269270# ADMET analysis - Lipophilicity vs Molecular Weight271scatter = ax2.scatter(molecular_weight, lipophilicity, c=binding_affinities[high_affinity_indices],272cmap='viridis_r', alpha=0.7, s=60, edgecolors='black', linewidth=0.5)273ax2.set_xlabel('Molecular Weight (Da)', fontweight='bold')274ax2.set_ylabel('Lipophilicity (LogP)', fontweight='bold')275ax2.set_title('ADMET Properties of High-Affinity Hits', fontweight='bold')276ax2.grid(True, alpha=0.3)277cbar = plt.colorbar(scatter, ax=ax2)278cbar.set_label('Binding Affinity (kcal/mol)', fontweight='bold')279280# Rule of Five compliance281ro5_compliant = ((molecular_weight <= 500) &282(lipophilicity <= 5) &283(polar_surface_area <= 140))284285labels = ['Compliant', 'Non-Compliant']286sizes = [np.sum(ro5_compliant), np.sum(~ro5_compliant)]287colors = ['#A8DADC', '#E63946']288289ax3.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=90)290ax3.set_title('Lipinski Rule of Five Compliance', fontweight='bold')291292# SAR analysis - Structure-Activity Relationship293pharmacophore_features = np.random.poisson(3, n_hits) # Number of pharmacophore features294ax4.scatter(pharmacophore_features, binding_affinities[high_affinity_indices],295alpha=0.7, s=60, color='#F77F00', edgecolors='black', linewidth=0.5)296ax4.set_xlabel('Number of Pharmacophore Features', fontweight='bold')297ax4.set_ylabel('Binding Affinity (kcal/mol)', fontweight='bold')298ax4.set_title('Structure-Activity Relationship', fontweight='bold')299ax4.grid(True, alpha=0.3)300301# Add trendline302z = np.polyfit(pharmacophore_features, binding_affinities[high_affinity_indices], 1)303p = np.poly1d(z)304ax4.plot(sorted(pharmacophore_features), p(sorted(pharmacophore_features)),305"r--", alpha=0.8, linewidth=2)306307plt.tight_layout()308plt.savefig('assets/virtual_screening.pdf', dpi=300, bbox_inches='tight')309plt.show()310311print(f"Total compounds screened: {len(binding_affinities):,}")312print(f"Hits identified (≤ -8 kcal/mol): {n_hits}")313print(f"Hit rate: {(n_hits/len(binding_affinities)*100):.1f}%")314print(f"Rule of Five compliance: {np.sum(ro5_compliant)}/{n_hits} ({np.sum(ro5_compliant)/n_hits*100:.1f}%)")315\end{pycode}316317\begin{figure}[H]318\centering319\includegraphics[width=0.95\textwidth]{assets/virtual_screening.pdf}320\caption{Virtual screening analysis: (a) Distribution of binding affinities from molecular docking, (b) ADMET properties correlation for high-affinity hits, (c) Lipinski Rule of Five compliance, and (d) Structure-activity relationship analysis.}321\label{fig:virtual_screening}322\end{figure}323324\subsection{Protein-Ligand Interaction Analysis}325% SEO: protein structure latex, solvation energy latex326327The protein-ligand interactions were analyzed using hydrogen bonding, hydrophobic contacts, and electrostatic interactions. Key binding residues were identified through interaction frequency analysis.328329\begin{pycode}330# Analyze protein-ligand interactions331import matplotlib.pyplot as plt332import numpy as np333334# Simulation data for interaction analysis335residue_names = ['GLU123', 'ARG156', 'TYR189', 'PHE234', 'ASP267', 'LYS301', 'TRP345', 'HIS378']336hydrogen_bonds = np.array([85, 72, 45, 12, 78, 56, 23, 89]) # % occupancy337hydrophobic_contacts = np.array([23, 45, 89, 92, 34, 67, 95, 56]) # % occupancy338electrostatic = np.array([78, 89, 12, 5, 82, 76, 15, 67]) # % occupancy339340# Create interaction heatmap341fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))342343# Interaction frequency heatmap344interaction_data = np.array([hydrogen_bonds, hydrophobic_contacts, electrostatic])345interaction_types = ['H-bonds', 'Hydrophobic', 'Electrostatic']346347im = ax1.imshow(interaction_data, cmap='YlOrRd', aspect='auto', vmin=0, vmax=100)348ax1.set_xticks(range(len(residue_names)))349ax1.set_xticklabels(residue_names, rotation=45, ha='right')350ax1.set_yticks(range(len(interaction_types)))351ax1.set_yticklabels(interaction_types)352ax1.set_title('Protein-Ligand Interaction Frequencies (%)', fontweight='bold', fontsize=12)353354# Add percentage labels355for i in range(len(interaction_types)):356for j in range(len(residue_names)):357text = ax1.text(j, i, f'{interaction_data[i, j]:.0f}%',358ha="center", va="center", color="black" if interaction_data[i, j] < 50 else "white",359fontweight='bold', fontsize=9)360361cbar1 = plt.colorbar(im, ax=ax1, shrink=0.8)362cbar1.set_label('Interaction Frequency (%)', fontweight='bold')363364# Binding energy decomposition365residue_contributions = -(hydrogen_bonds * 0.05 + hydrophobic_contacts * 0.03 + electrostatic * 0.04)366total_binding_energy = np.sum(residue_contributions)367368bars = ax2.bar(range(len(residue_names)), residue_contributions,369color=['#E74C3C', '#3498DB', '#2ECC71', '#F39C12', '#9B59B6', '#1ABC9C', '#E67E22', '#34495E'])370ax2.set_xlabel('Binding Site Residues', fontweight='bold')371ax2.set_ylabel('Energy Contribution (kcal/mol)', fontweight='bold')372ax2.set_title('Per-Residue Binding Energy Decomposition', fontweight='bold')373ax2.set_xticks(range(len(residue_names)))374ax2.set_xticklabels(residue_names, rotation=45, ha='right')375ax2.grid(True, alpha=0.3, axis='y')376377# Add value labels on bars378for i, v in enumerate(residue_contributions):379ax2.text(i, v - 0.1, f'{v:.1f}', ha='center', va='top', fontweight='bold', fontsize=9)380381plt.tight_layout()382plt.savefig('assets/protein_ligand_interactions.pdf', dpi=300, bbox_inches='tight')383plt.show()384385print(f"Total calculated binding energy: {total_binding_energy:.1f} kcal/mol")386print(f"Most important residue: {residue_names[np.argmin(residue_contributions)]} ({residue_contributions[np.argmin(residue_contributions)]:.1f} kcal/mol)")387\end{pycode}388389\begin{figure}[H]390\centering391\includegraphics[width=0.95\textwidth]{assets/protein_ligand_interactions.pdf}392\caption{Protein-ligand interaction analysis: (left) Interaction frequency heatmap showing hydrogen bonding, hydrophobic contacts, and electrostatic interactions for key binding site residues, and (right) per-residue binding energy decomposition calculated from interaction frequencies.}393\label{fig:protein_interactions}394\end{figure}395396\section{Chemical Reactions and Mechanisms}397% SEO: reaction pathway latex, transition state searches398399\subsection{Reaction Pathway Analysis}400401The reaction mechanism was investigated using transition state theory and intrinsic reaction coordinate (IRC) calculations. The energy profile reveals the rate-determining step and intermediate stability.402403\begin{pycode}404# Generate reaction pathway energy profile405import matplotlib.pyplot as plt406import numpy as np407408# Reaction coordinate and energies (in kcal/mol)409reaction_coord = np.array([0, 1, 2, 3, 4, 5, 6])410energies = np.array([0, 12.5, 25.8, 18.3, 22.1, 8.5, -15.2]) # Reactants to products411412# Labels for reaction steps413step_labels = ['Reactants', 'TS1', 'Int1', 'TS2', 'Int2', 'TS3', 'Products']414415fig, ax = plt.subplots(figsize=(12, 8))416417# Plot energy profile418ax.plot(reaction_coord, energies, 'o-', linewidth=3, markersize=8, color='#2E86AB')419420# Fill areas to highlight energy barriers421for i in range(len(reaction_coord)-1):422if 'TS' in step_labels[i] or 'TS' in step_labels[i+1]:423ax.fill_between(reaction_coord[i:i+2], energies[i:i+2], alpha=0.3, color='red')424else:425ax.fill_between(reaction_coord[i:i+2], energies[i:i+2], alpha=0.3, color='lightblue')426427# Add energy labels428for i, (x, y) in enumerate(zip(reaction_coord, energies)):429ax.annotate(f'{y:.1f}', xy=(x, y), xytext=(0, 15),430textcoords='offset points', ha='center', fontweight='bold',431bbox=dict(boxstyle='round,pad=0.3', facecolor='white', alpha=0.8))432433# Customize plot434ax.set_xlabel('Reaction Coordinate', fontsize=14, fontweight='bold')435ax.set_ylabel('Relative Energy (kcal/mol)', fontsize=14, fontweight='bold')436ax.set_title('Reaction Energy Profile: Diels-Alder Cycloaddition', fontsize=16, fontweight='bold')437ax.set_xticks(reaction_coord)438ax.set_xticklabels(step_labels, rotation=45, ha='right')439ax.grid(True, alpha=0.3)440ax.axhline(y=0, color='black', linestyle='--', alpha=0.5)441442# Add reaction scheme using chemical equations443reaction_text = r'$\mathrm{C_4H_6 + C_2H_4 \rightarrow C_6H_{10}}$'444ax.text(0.02, 0.98, reaction_text, transform=ax.transAxes, fontsize=14,445verticalalignment='top', bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.8))446447plt.tight_layout()448plt.savefig('assets/reaction_pathway.pdf', dpi=300, bbox_inches='tight')449plt.show()450451# Calculate thermodynamic and kinetic parameters452activation_energy = max(energies) - energies[0]453reaction_energy = energies[-1] - energies[0]454455print(f"Activation energy (forward): {activation_energy:.1f} kcal/mol")456print(f"Reaction energy: {reaction_energy:.1f} kcal/mol")457print(f"Rate-determining step: {step_labels[np.argmax(energies)]} ({max(energies):.1f} kcal/mol)")458\end{pycode}459460\begin{figure}[H]461\centering462\includegraphics[width=0.85\textwidth]{assets/reaction_pathway.pdf}463\caption{Reaction energy profile for the Diels-Alder cycloaddition calculated at the B3LYP/6-31G(d,p) level. Transition states (TS) and intermediates (Int) are labeled with their relative energies. The reaction is thermodynamically favorable with $\Delta E = \SI{-15.2}{\kcalmol}$.}464\label{fig:reaction_pathway}465\end{figure}466467\subsection{Molecular Orbital Analysis}468469The frontier molecular orbitals (\homo\ and \lumo) control the reactivity and electronic properties. The orbital energies and symmetries determine the feasibility of chemical reactions.470471\begin{pycode}472# Create molecular orbital energy diagram473import matplotlib.pyplot as plt474import numpy as np475476fig, ax = plt.subplots(figsize=(10, 8))477478# Molecular orbital energies (eV) for reactants and product479reactant1_orbitals = [-8.2, -7.1, -6.8, -5.9, -5.2, -1.8, -0.9, 0.3, 1.2] # Diene480reactant2_orbitals = [-9.1, -8.3, -6.2, -2.1, 0.8, 1.5, 2.3] # Dienophile481product_orbitals = [-9.8, -8.9, -7.8, -7.2, -6.5, -5.8, -5.1, -2.5, -1.9, -0.8, 0.5, 1.4, 2.1]482483# Plot energy levels484x_positions = [1, 3, 5]485x_labels = ['Diene\n(C₄H₆)', 'Dienophile\n(C₂H₄)', 'Product\n(C₆H₁₀)']486487# Draw energy levels488for i, orbitals in enumerate([reactant1_orbitals, reactant2_orbitals, product_orbitals]):489x = x_positions[i]490for j, energy in enumerate(orbitals):491line_color = 'red' if energy > 0 else 'blue' # LUMO vs HOMO492line_width = 3 if abs(energy) < 2.5 else 2 # Highlight frontier orbitals493ax.hlines(energy, x-0.3, x+0.3, colors=line_color, linewidth=line_width)494495# Label HOMO and LUMO496if i < 2: # Only for reactants497if energy == max([e for e in orbitals if e < 0]): # HOMO498ax.text(x+0.4, energy, 'HOMO', fontsize=10, fontweight='bold', va='center')499elif energy == min([e for e in orbitals if e > 0]): # LUMO500ax.text(x+0.4, energy, 'LUMO', fontsize=10, fontweight='bold', va='center')501502# Add arrows showing orbital interactions503ax.annotate('', xy=(2.7, -1.8), xytext=(1.3, -5.2), # HOMO-LUMO interaction504arrowprops=dict(arrowstyle='<->', color='green', lw=2))505ax.text(2, -3.5, 'HOMO-LUMO\nInteraction', ha='center', fontsize=10,506color='green', fontweight='bold')507508# Customize plot509ax.set_xlim(0, 6)510ax.set_ylim(-12, 3)511ax.set_ylabel('Energy (eV)', fontsize=14, fontweight='bold')512ax.set_title('Molecular Orbital Energy Diagram: Diels-Alder Reaction', fontsize=16, fontweight='bold')513ax.set_xticks(x_positions)514ax.set_xticklabels(x_labels, fontsize=12, fontweight='bold')515516# Add energy scale517ax.axhline(y=0, color='black', linestyle='--', alpha=0.5, linewidth=1)518ax.text(5.5, 0.2, 'Vacuum Level', fontsize=10, ha='right')519520# Add legend521ax.plot([], [], 'r-', linewidth=3, label='LUMO (unoccupied)')522ax.plot([], [], 'b-', linewidth=3, label='HOMO (occupied)')523ax.legend(loc='upper right', fontsize=11)524525plt.tight_layout()526plt.savefig('assets/molecular_orbitals.pdf', dpi=300, bbox_inches='tight')527plt.show()528529# Calculate orbital gap530diene_gap = min([e for e in reactant1_orbitals if e > 0]) - max([e for e in reactant1_orbitals if e < 0])531dienophile_gap = min([e for e in reactant2_orbitals if e > 0]) - max([e for e in reactant2_orbitals if e < 0])532533print(f"Diene HOMO-LUMO gap: {diene_gap:.1f} eV")534print(f"Dienophile HOMO-LUMO gap: {dienophile_gap:.1f} eV")535\end{pycode}536537\begin{figure}[H]538\centering539\includegraphics[width=0.85\textwidth]{assets/molecular_orbitals.pdf}540\caption{Molecular orbital energy diagram for the Diels-Alder cycloaddition showing the frontier orbital interactions between diene and dienophile. The HOMO-LUMO gap determines the activation energy and reaction feasibility.}541\label{fig:molecular_orbitals}542\end{figure}543544\section{Results and Discussion}545546\subsection{Quantum Chemical Properties}547548The calculated properties demonstrate excellent agreement with experimental values where available. The \dft\ calculations predict:549550\begin{itemize}551\item \homo-\lumo\ gaps ranging from \SIrange{3.5}{4.8}{\eV} for the aromatic series552\item Binding energies of \SIrange{-8.5}{-12.3}{\kcalmol} for high-affinity ligands553\item Activation barriers of \SI{25.8}{\kcalmol} for the cycloaddition reaction554\end{itemize}555556\subsection{Molecular Dynamics Insights}557558The MD simulations reveal stable protein-ligand complexes with average RMSD values below \SI{2.5}{\angstrom}. Key findings include:559560\begin{enumerate}561\item Hydrogen bonding dominates binding affinity (GLU123, HIS378)562\item Hydrophobic interactions provide selectivity (PHE234, TRP345)563\item Electrostatic complementarity stabilizes the complex564\end{enumerate}565566\subsection{Drug Design Implications}567568The virtual screening identified promising lead compounds with:569\begin{itemize}570\item High binding affinity ($\leq$ \SI{-8}{\kcalmol})571\item Favorable ADMET properties572\item Good Lipinski Rule of Five compliance (\SI{78}{\percent})573\end{itemize}574575\section{Computational Details}576577\begin{table}[H]578\centering579\caption{Summary of computational methods and software used.}580\label{tab:computational_methods}581\begin{tabular}{@{}lll@{}}582\toprule583\textbf{Method} & \textbf{Software} & \textbf{Key Parameters} \\584\midrule585DFT Calculations & Gaussian 16 & B3LYP/6-31G(d,p), Freq \\586MD Simulations & AMBER 20 & ff19SB, TIP3P, 100 ns \\587Molecular Docking & AutoDock Vina & Exhaustiveness = 8 \\588Virtual Screening & Schrödinger Suite & HTVS, SP, XP protocols \\589Visualization & PyMOL, VMD & Ray tracing, publication quality \\590Analysis & Python/NumPy & matplotlib, seaborn, scipy \\591\bottomrule592\end{tabular}593\end{table}594595\section{Conclusion}596597This computational chemistry template demonstrates the integration of quantum chemical calculations, molecular dynamics simulations, and drug discovery applications. The reproducible workflows and embedded calculations enable transparent and verifiable research outcomes.598599Future extensions could include:600\begin{itemize}601\item Machine learning property prediction602\item Free energy perturbation calculations603\item QM/MM hybrid methods604\item Enhanced sampling techniques605\end{itemize}606607\section*{Data and Code Availability}608609All calculation inputs, outputs, and analysis scripts are available in the project repository. The embedded Python code ensures full reproducibility of results and figures.610611\bibliographystyle{unsrt}612\begin{thebibliography}{99}613614\bibitem{gaussian16}615M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al.,616\textit{Gaussian 16, Revision C.01},617Gaussian, Inc., Wallingford CT, 2016.618619\bibitem{amber20}620D.A. Case, H.M. Aktulga, K. Belfon, et al.,621\textit{AMBER 2020},622University of California, San Francisco, 2020.623624\bibitem{vina}625O. Trott and A. J. Olson,626\textit{AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading},627J. Comput. Chem. \textbf{31}, 455-461 (2010).628629\end{thebibliography}630631\end{document}632633