Group of Dirichlet characters of modulus 13 over Cyclotomic Field of order 12 and degree 4
Dirichlet character modulo 13 of conductor 13 mapping 2 |--> zeta12
-zeta156^46 + zeta156^45 + zeta156^42 + zeta156^41 + 2*zeta156^40 + zeta156^37 - zeta156^36 - zeta156^34 - zeta156^33 - zeta156^31 + 2*zeta156^30 + zeta156^28 - zeta156^24 - zeta156^22 + zeta156^21 + zeta156^20 - zeta156^19 + zeta156^18 - zeta156^16 - zeta156^15 - 2*zeta156^14 - zeta156^10 + zeta156^8 + zeta156^7 + zeta156^6 + zeta156^5 - zeta156^4 - zeta156^2 - 1
13^24
Group of Dirichlet characters of modulus 5 over Cyclotomic Field of order 4 and degree 2
Dirichlet character modulo 5 of conductor 5 mapping 2 |--> zeta4
zeta20^7 + zeta20^6 + zeta20^4 - zeta20^3
3
Group of Dirichlet characters of modulus 3 over Cyclotomic Field of order 2 and degree 1
Dirichlet character modulo 3 of conductor 1 mapping 2 |--> 1
Gauss sum -1
Dirichlet character modulo 3 of conductor 3 mapping 2 |--> -1
2*zeta6 - 1
zeta42^10 + zeta42^8 + zeta42^6 - zeta42^5 - zeta42^4 - zeta42^2 - zeta42