\documentclass[conference]{IEEEtran}
\usepackage{ifxetex,ifluatex}
\if\ifxetex T\else\ifluatex T\else F\fi\fi T
\usepackage{fontspec}
\else
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{lmodern}
\fi
\usepackage{amsmath, amssymb}
\usepackage{graphicx}
\usepackage{pythontex}
\usepackage{hyperref}
\title{The Relationship between Neural Networks, Deep Learning, and Functional Analysis}
\author{Author Name\\
Department or Organization\\
Email Address}
\begin{document}
\maketitle
\begin{abstract}
This document provides a template for submitting a research article to IEEE. It explores the relationship between neural networks, deep learning, and functional analysis. An illustrative example with a toy problem is included.
\end{abstract}
\IEEEpeerreviewmaketitle
\section{Introduction}
Neural networks and deep learning have become central to modern artificial intelligence. Functional analysis provides a rigorous framework for understanding the theoretical foundations of these models.
\section{Neural Networks and Deep Learning}
Discuss the concepts of neural networks and deep learning, how they are structured, and their typical applications.
\section{Functional Analysis}
Explore how functional analysis can be applied to understand the properties of neural networks, such as stability, approximation, and generalization.
\section{Example Application}
Consider a toy problem where you apply a basic neural network model to approximate a simple function.
\subsection{Toy Problem}
Describe the toy problem in detail. For example, using a neural network to approximate a sine function over a specific interval.
\subsection{Python Script}
Use PythonTeX to include a Python script that plots the approximation.
\begin{pycode}
import numpy as np
import matplotlib.pyplot as plt
# Define the true function
x = np.linspace(-2*np.pi, 2*np.pi, 100)
y = np.sin(x)
# Define a toy neural network output (for demonstration)
y_nn = np.sin(x) + 0.1*np.random.randn(len(x))
# Plotting
plt.figure(figsize=(8, 4))
plt.plot(x, y, label='True Function')
plt.plot(x, y_nn, label='Neural Network Approximation', linestyle='--')
plt.legend()
plt.title('Toy Problem: Neural Network Approximation of a Sine Function')
plt.xlabel('x')
plt.ylabel('y')
plt.grid(True)
plt.savefig('neural_network_approximation.png')
\end{pycode}
\begin{figure}[h]
\centering
\includegraphics[width=\linewidth]{neural_network_approximation.png}
\caption{Neural Network Approximation of the Sine Function}
\label{fig:nn_approx}
\end{figure}
\section{Conclusion}
Summarize the findings and implications for further research.
\bibliographystyle{IEEEtran}
\bibliography{references}
\end{document}