Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
130 views
ubuntu2404
1
\documentclass[11pt,a4paper]{article}
2
3
% Essential packages for aerospace engineering and CFD
4
\usepackage[utf8]{inputenc}
5
\usepackage[T1]{fontenc}
6
\usepackage{textcomp} % For additional text symbols
7
\usepackage{amsmath,amsfonts,amssymb}
8
\usepackage{graphicx}
9
\usepackage{booktabs}
10
\usepackage{siunitx}
11
\usepackage{float}
12
\usepackage[margin=1in]{geometry}
13
\usepackage{hyperref}
14
15
% Python code execution with PythonTeX
16
\usepackage{pythontex}
17
\usepackage{fancyvrb}
18
19
% Enhanced listings for code display
20
\usepackage{listings}
21
\usepackage{xcolor}
22
23
% Configure listings for Python
24
\lstset{
25
language=Python,
26
basicstyle=\ttfamily\small,
27
keywordstyle=\color{blue},
28
stringstyle=\color{red},
29
commentstyle=\color{gray},
30
numberstyle=\tiny,
31
numbers=left,
32
frame=single,
33
breaklines=true
34
}
35
36
% Title and author information
37
\title{Aerospace Engineering CFD Analysis Template}
38
\author{Your Name\\
39
Department of Aerospace Engineering\\
40
Your Institution}
41
\date{\today}
42
43
\begin{document}
44
45
\maketitle
46
47
\begin{abstract}
48
This template demonstrates computational fluid dynamics (CFD) analysis techniques in aerospace engineering, including NACA airfoil analysis, aerodynamic performance calculations, propulsion system modeling, and flight dynamics simulations.
49
50
The template integrates Python computations with LaTeX for reproducible aerospace engineering reports.
51
\end{abstract}
52
53
\tableofcontents
54
\newpage
55
56
\section{Introduction}
57
58
Computational Fluid Dynamics (CFD) has become an essential tool in aerospace engineering for analyzing complex flow phenomena around aircraft, spacecraft, and propulsion systems.
59
60
This template provides a foundation for aerospace engineering reports that combine theoretical analysis with computational results.
61
62
\section{Aerodynamics Analysis}
63
64
\subsection{NACA Airfoil Geometry}
65
66
The NACA 4-digit series airfoils are widely used in aerospace applications. For a NACA MPXX airfoil, where M is the maximum camber percentage, P is the position of maximum camber, and XX is the thickness percentage.
67
68
\begin{pycode}
69
import numpy as np
70
import matplotlib.pyplot as plt
71
72
def naca_4digit(m, p, t, c=1.0, n=100):
73
"""
74
Generate NACA 4-digit airfoil coordinates
75
m: maximum camber (as fraction of chord)
76
p: position of maximum camber (as fraction of chord)
77
t: thickness (as fraction of chord)
78
c: chord length
79
n: number of points
80
"""
81
# Cosine spacing for better resolution near leading edge
82
beta = np.linspace(0, np.pi, n)
83
x = c * (1 - np.cos(beta)) / 2
84
85
# Thickness distribution
86
yt = 5 * t * c * (0.2969 * np.sqrt(x/c) -
87
0.1260 * (x/c) -
88
0.3516 * (x/c)**2 +
89
0.2843 * (x/c)**3 -
90
0.1015 * (x/c)**4)
91
92
# Camber line
93
yc = np.zeros_like(x)
94
dyc_dx = np.zeros_like(x)
95
96
if p > 0: # Cambered airfoil
97
# Forward of maximum camber
98
mask1 = x <= p * c
99
yc[mask1] = (m * c * x[mask1] / (p * c)**2 *
100
(2 * p * c - x[mask1]) / c**2)
101
dyc_dx[mask1] = 2 * m / p**2 * (p - x[mask1]/c)
102
103
# Aft of maximum camber
104
mask2 = x > p * c
105
yc[mask2] = (m * c * (c - x[mask2]) / (1 - p)**2 / c**2 *
106
(1 + x[mask2]/c - 2*p))
107
dyc_dx[mask2] = 2 * m / (1 - p)**2 * (p - x[mask2]/c)
108
109
# Surface coordinates
110
theta = np.arctan(dyc_dx)
111
xu = x - yt * np.sin(theta)
112
yu = yc + yt * np.cos(theta)
113
xl = x + yt * np.sin(theta)
114
yl = yc - yt * np.cos(theta)
115
116
return xu, yu, xl, yl, x, yc
117
118
# Generate NACA 2412 airfoil
119
xu, yu, xl, yl, x_camber, y_camber = naca_4digit(0.02, 0.4, 0.12)
120
121
# Plot airfoil
122
plt.figure(figsize=(10, 6))
123
plt.plot(xu, yu, 'b-', linewidth=2, label='Upper surface')
124
plt.plot(xl, yl, 'r-', linewidth=2, label='Lower surface')
125
plt.plot(x_camber, y_camber, 'k--', linewidth=1, label='Camber line')
126
plt.xlabel('x/c')
127
plt.ylabel('y/c')
128
plt.title('NACA 2412 Airfoil Geometry')
129
plt.grid(True, alpha=0.3)
130
plt.legend()
131
plt.axis('equal')
132
plt.tight_layout()
133
plt.savefig('naca2412_geometry.pdf', dpi=300, bbox_inches='tight')
134
plt.show()
135
136
print(f"NACA 2412 Airfoil Parameters:")
137
print(f"Maximum camber: 2% at 40% chord")
138
print(f"Maximum thickness: 12% chord")
139
print(f"Leading edge radius: {5 * 0.12**2:.4f}c")
140
\end{pycode}
141
142
\begin{figure}[H]
143
\centering
144
\includegraphics[width=0.8\textwidth]{naca2412_geometry.pdf}
145
\caption{NACA 2412 airfoil geometry showing upper surface, lower surface, and camber line.}
146
\label{fig:naca2412}
147
\end{figure}
148
149
\subsection{Aerodynamic Performance Analysis}
150
151
\begin{pycode}
152
# Simplified thin airfoil theory calculations
153
def thin_airfoil_theory(alpha_deg, camber_max, camber_pos):
154
"""
155
Calculate lift coefficient using thin airfoil theory
156
alpha_deg: angle of attack in degrees
157
camber_max: maximum camber as fraction of chord
158
camber_pos: position of maximum camber as fraction of chord
159
"""
160
alpha_rad = np.radians(alpha_deg)
161
162
# Lift curve slope (per radian)
163
a0 = 2 * np.pi
164
165
# Zero-lift angle of attack for cambered airfoil
166
alpha_L0 = -2 * camber_max * (1 - 2 * camber_pos) / np.pi * np.pi/180
167
168
# Lift coefficient
169
cl = a0 * (alpha_rad - alpha_L0)
170
171
return cl, alpha_L0 * 180/np.pi
172
173
# Performance analysis for NACA 2412
174
alpha_range = np.linspace(-5, 15, 21)
175
cl_values = []
176
alpha_L0_theory = None
177
178
for alpha in alpha_range:
179
cl, alpha_L0 = thin_airfoil_theory(alpha, 0.02, 0.4)
180
cl_values.append(cl)
181
if alpha_L0_theory is None:
182
alpha_L0_theory = alpha_L0
183
184
cl_values = np.array(cl_values)
185
186
# Plot lift curve
187
plt.figure(figsize=(10, 6))
188
plt.plot(alpha_range, cl_values, 'bo-', linewidth=2, markersize=6,
189
label='Thin Airfoil Theory')
190
plt.axhline(y=0, color='k', linestyle='--', alpha=0.5)
191
plt.axvline(x=alpha_L0_theory, color='r', linestyle='--', alpha=0.7,
192
label=f'Zero-lift AoA = {alpha_L0_theory:.2f}°')
193
plt.xlabel('Angle of Attack (degrees)')
194
plt.ylabel('Lift Coefficient, $C_L$')
195
plt.title('NACA 2412 Lift Curve - Thin Airfoil Theory')
196
plt.grid(True, alpha=0.3)
197
plt.legend()
198
plt.tight_layout()
199
plt.savefig('naca2412_lift_curve.pdf', dpi=300, bbox_inches='tight')
200
plt.show()
201
202
print(f"Aerodynamic Analysis Results:")
203
print(f"Zero-lift angle of attack: {alpha_L0_theory:.2f} degrees")
204
print(f"Lift curve slope: {2*np.pi:.3f} per radian "
205
f"({2*np.pi*180/np.pi:.1f} per degree)")
206
print(f"At alpha = 5 degrees: CL = {cl_values[np.argmin(np.abs(alpha_range - 5))]:.3f}")
207
\end{pycode}
208
209
\begin{figure}[H]
210
\centering
211
\includegraphics[width=0.8\textwidth]{naca2412_lift_curve.pdf}
212
\caption{Lift coefficient variation with angle of attack for NACA 2412 airfoil using thin airfoil theory.}
213
\label{fig:lift_curve}
214
\end{figure}
215
216
\section{CFD Analysis Fundamentals}
217
218
\subsection{Governing Equations}
219
220
The Navier-Stokes equations govern fluid flow in aerospace applications:
221
222
\begin{align}
223
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0 \label{eq:continuity}\\
224
\frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) &= -\nabla p + \nabla \cdot \boldsymbol{\tau} + \rho \mathbf{f} \label{eq:momentum}\\
225
\frac{\partial (\rho E)}{\partial t} + \nabla \cdot ((\rho E + p)\mathbf{u}) &= \nabla \cdot (\mathbf{k} \nabla T) + \nabla \cdot (\boldsymbol{\tau} \cdot \mathbf{u}) + \rho \mathbf{f} \cdot \mathbf{u} \label{eq:energy}
226
\end{align}
227
228
where $\rho$ is density, $\mathbf{u}$ is velocity vector, $p$ is pressure, $\boldsymbol{\tau}$ is viscous stress tensor, $E$ is total energy per unit mass, and $\mathbf{f}$ represents body forces.
229
230
\subsection{Dimensionless Parameters}
231
232
Key dimensionless parameters in aerospace CFD:
233
234
\begin{pycode}
235
import pandas as pd
236
237
# Create table of important dimensionless parameters
238
parameters = {
239
'Parameter': ['Reynolds Number', 'Mach Number', 'Prandtl Number',
240
'Lift Coefficient', 'Drag Coefficient', 'Pressure Coefficient'],
241
'Symbol': ['$Re$', '$Ma$', '$Pr$', '$C_L$', '$C_D$', '$C_p$'],
242
'Definition': ['$\\frac{\\rho U L}{\\mu}$', '$\\frac{U}{a}$', '$\\frac{\\mu c_p}{k}$',
243
'$\\frac{L}{\\frac{1}{2}\\rho U^2 S}$', '$\\frac{D}{\\frac{1}{2}\\rho U^2 S}$',
244
'$\\frac{p - p_\\infty}{\\frac{1}{2}\\rho U^2}$'],
245
'Physical Meaning': ['Inertial/Viscous forces', 'Flow/Sound speed', 'Momentum/Thermal diffusivity',
246
'Lift/Dynamic pressure', 'Drag/Dynamic pressure', 'Local/Dynamic pressure']
247
}
248
249
df = pd.DataFrame(parameters)
250
print("Key Dimensionless Parameters in Aerospace CFD:")
251
print("=" * 40)
252
for i, row in df.iterrows():
253
print(f"{row['Parameter']:<20} {row['Symbol']:<8} {row['Physical Meaning']}")
254
\end{pycode}
255
256
\section{Propulsion Analysis}
257
258
\subsection{Turbojet Engine Performance}
259
260
\begin{pycode}
261
def turbojet_performance(Ma0, gamma=1.4, cp=1005, T0=288.15, pi_c=8, pi_b=0.95,
262
T04=1400, eta_c=0.85, eta_t=0.88, eta_n=0.98):
263
"""
264
Simplified turbojet engine performance analysis
265
Ma0: flight Mach number
266
gamma: specific heat ratio
267
cp: specific heat at constant pressure (J/kg/K)
268
T0: ambient temperature (K)
269
pi_c: compressor pressure ratio
270
pi_b: burner pressure ratio
271
T04: turbine inlet temperature (K)
272
eta_c: compressor efficiency
273
eta_t: turbine efficiency
274
eta_n: nozzle efficiency
275
"""
276
R = cp * (gamma - 1) / gamma
277
278
# Station 0: Ambient conditions
279
T00 = T0 * (1 + (gamma - 1) / 2 * Ma0**2)
280
p00 = 101325 * (T00 / T0)**(gamma / (gamma - 1))
281
282
# Station 2: Compressor exit (ideal)
283
T02_ideal = T00 * pi_c**((gamma - 1) / gamma)
284
T02 = T00 + (T02_ideal - T00) / eta_c
285
p02 = p00 * pi_c
286
287
# Station 3: Burner exit
288
T03 = T04 # Assuming complete combustion
289
p03 = p02 * pi_b
290
291
# Station 4: Turbine exit
292
# Work balance: turbine work = compressor work
293
T04_ideal = T03 - (T02 - T00) / eta_t
294
T04_actual = T03 - (T02 - T00) / eta_t
295
pi_t = (T04_actual / T03)**(gamma / (gamma - 1))
296
p04 = p03 * pi_t
297
298
# Station 9: Nozzle exit
299
p9 = 101325 # Assume perfectly expanded
300
T09_ideal = T04_actual * (p9 / p04)**((gamma - 1) / gamma)
301
T9 = T04_actual - eta_n * (T04_actual - T09_ideal)
302
303
# Exhaust velocity
304
V9 = np.sqrt(2 * cp * (T04_actual - T9))
305
306
# Flight velocity
307
V0 = Ma0 * np.sqrt(gamma * R * T0)
308
309
# Specific thrust and specific fuel consumption (simplified)
310
F_specific = V9 - V0 # N per kg/s of air
311
312
return {
313
'V0': V0,
314
'V9': V9,
315
'F_specific': F_specific,
316
'T02': T02,
317
'T04': T04_actual,
318
'pi_c': pi_c,
319
'pi_t': pi_t
320
}
321
322
# Performance analysis for different flight conditions
323
mach_numbers = np.linspace(0, 2.0, 21)
324
results = []
325
326
for Ma in mach_numbers:
327
perf = turbojet_performance(Ma)
328
results.append([Ma, perf['F_specific'], perf['V9'], perf['V0']])
329
330
results = np.array(results)
331
332
# Plot performance
333
plt.figure(figsize=(12, 8))
334
335
plt.subplot(2, 2, 1)
336
plt.plot(results[:, 0], results[:, 1], 'b-o', linewidth=2, markersize=4)
337
plt.xlabel('Flight Mach Number')
338
plt.ylabel('Specific Thrust (N·s/kg)')
339
plt.title('Turbojet Specific Thrust vs Flight Mach')
340
plt.grid(True, alpha=0.3)
341
342
plt.subplot(2, 2, 2)
343
plt.plot(results[:, 0], results[:, 2], 'r-', linewidth=2, label='Exhaust Velocity')
344
plt.plot(results[:, 0], results[:, 3], 'g--', linewidth=2, label='Flight Velocity')
345
plt.xlabel('Flight Mach Number')
346
plt.ylabel('Velocity (m/s)')
347
plt.title('Velocities vs Flight Mach')
348
plt.legend()
349
plt.grid(True, alpha=0.3)
350
351
plt.subplot(2, 2, 3)
352
efficiency = results[:, 1] * results[:, 3] / (0.5 * (results[:, 2]**2 - results[:, 3]**2))
353
plt.plot(results[:, 0], efficiency, 'purple', linewidth=2)
354
plt.xlabel('Flight Mach Number')
355
plt.ylabel('Propulsive Efficiency')
356
plt.title('Propulsive Efficiency vs Flight Mach')
357
plt.grid(True, alpha=0.3)
358
359
plt.subplot(2, 2, 4)
360
thrust_ratio = results[:, 1] / results[0, 1] # Normalized to Ma=0
361
plt.plot(results[:, 0], thrust_ratio, 'orange', linewidth=2)
362
plt.xlabel('Flight Mach Number')
363
plt.ylabel('Normalized Specific Thrust')
364
plt.title('Thrust Variation with Altitude')
365
plt.grid(True, alpha=0.3)
366
367
plt.tight_layout()
368
plt.savefig('turbojet_performance.pdf', dpi=300, bbox_inches='tight')
369
plt.show()
370
371
print("Turbojet Performance Summary:")
372
print(f"Sea level static specific thrust: {results[0, 1]:.1f} N·s/kg")
373
print(f"Cruise (Ma=0.8) specific thrust: {results[16, 1]:.1f} N·s/kg")
374
print(f"Maximum analyzed Mach: {results[-1, 0]:.1f}")
375
\end{pycode}
376
377
\begin{figure}[H]
378
\centering
379
\includegraphics[width=\textwidth]{turbojet_performance.pdf}
380
\caption{Turbojet engine performance characteristics showing specific thrust, velocities, propulsive efficiency, and thrust variation with flight Mach number.}
381
\label{fig:turbojet}
382
\end{figure}
383
384
\section{Flight Dynamics}
385
386
\subsection{Aircraft Stability Analysis}
387
388
\begin{pycode}
389
def static_stability_analysis(cg_position, ac_position, cl_alpha, cm_alpha_wing,
390
cm_alpha_tail, tail_volume):
391
"""
392
Analyze longitudinal static stability
393
cg_position: center of gravity position (fraction of MAC)
394
ac_position: aerodynamic center position (fraction of MAC)
395
cl_alpha: lift curve slope (per radian)
396
cm_alpha_wing: wing pitching moment curve slope
397
cm_alpha_tail: tail pitching moment curve slope
398
tail_volume: tail volume coefficient
399
"""
400
401
# Static margin
402
static_margin = ac_position - cg_position
403
404
# Total pitching moment curve slope
405
cm_alpha_total = cm_alpha_wing + cm_alpha_tail * tail_volume
406
407
# Neutral point
408
neutral_point = ac_position - cm_alpha_total / cl_alpha
409
410
# Stability criterion
411
is_stable = static_margin > 0
412
413
return {
414
'static_margin': static_margin,
415
'neutral_point': neutral_point,
416
'cm_alpha_total': cm_alpha_total,
417
'is_stable': is_stable
418
}
419
420
# Example aircraft stability analysis
421
aircraft_data = {
422
'cg_range': np.linspace(0.20, 0.35, 100), # CG positions from 20% to 35% MAC
423
'ac_position': 0.25, # Aerodynamic center at 25% MAC
424
'cl_alpha': 2 * np.pi, # Lift curve slope
425
'cm_alpha_wing': -0.1, # Wing contribution
426
'cm_alpha_tail': -0.8, # Tail contribution
427
'tail_volume': 0.5 # Tail volume coefficient
428
}
429
430
stability_results = []
431
for cg in aircraft_data['cg_range']:
432
result = static_stability_analysis(
433
cg, aircraft_data['ac_position'], aircraft_data['cl_alpha'],
434
aircraft_data['cm_alpha_wing'], aircraft_data['cm_alpha_tail'],
435
aircraft_data['tail_volume']
436
)
437
stability_results.append([cg, result['static_margin'], result['is_stable']])
438
439
stability_results = np.array(stability_results)
440
441
# Plot stability analysis
442
plt.figure(figsize=(12, 6))
443
444
plt.subplot(1, 2, 1)
445
plt.plot(stability_results[:, 0] * 100, stability_results[:, 1] * 100,
446
'b-', linewidth=2)
447
plt.axhline(y=0, color='r', linestyle='--', linewidth=2, label='Neutral Stability')
448
stable_mask = stability_results[:, 1] > 0
449
plt.fill_between(stability_results[stable_mask, 0] * 100,
450
stability_results[stable_mask, 1] * 100,
451
alpha=0.3, color='green', label='Stable Region')
452
plt.xlabel('CG Position (% MAC)')
453
plt.ylabel('Static Margin (% MAC)')
454
plt.title('Longitudinal Static Stability')
455
plt.grid(True, alpha=0.3)
456
plt.legend()
457
458
plt.subplot(1, 2, 2)
459
# Control authority analysis (simplified)
460
elevator_deflection = np.linspace(-20, 20, 41)
461
cm_delta_e = -0.02 # Elevator effectiveness (per degree)
462
trim_moments = []
463
464
for delta_e in elevator_deflection:
465
cm_trim = cm_delta_e * delta_e
466
trim_moments.append(cm_trim)
467
468
plt.plot(elevator_deflection, trim_moments, 'g-', linewidth=2,
469
label='Elevator Moment')
470
plt.axhline(y=0, color='k', linestyle='-', alpha=0.5)
471
plt.xlabel('Elevator Deflection (degrees)')
472
plt.ylabel('Pitching Moment Coefficient')
473
plt.title('Control Authority')
474
plt.grid(True, alpha=0.3)
475
plt.legend()
476
477
plt.tight_layout()
478
plt.savefig('flight_dynamics_stability.pdf', dpi=300, bbox_inches='tight')
479
plt.show()
480
481
print("Flight Dynamics Analysis:")
482
print(f"Aerodynamic center: {aircraft_data['ac_position']*100:.1f}% MAC")
483
print(f"Stable CG range: {stability_results[stable_mask, 0].min()*100:.1f}% to {stability_results[stable_mask, 0].max()*100:.1f}% MAC")
484
print(f"Maximum static margin: {stability_results[:, 1].max()*100:.1f}% MAC")
485
\end{pycode}
486
487
\begin{figure}[H]
488
\centering
489
\includegraphics[width=\textwidth]{flight_dynamics_stability.pdf}
490
\caption{Longitudinal static stability analysis showing static margin variation with CG position and elevator control authority.}
491
\label{fig:stability}
492
\end{figure}
493
494
\section{Computational Methods}
495
496
\subsection{Finite Difference Discretization}
497
498
For CFD applications, the governing equations are discretized using finite difference, finite volume, or finite element methods. A simple example of finite difference discretization for the 1D heat equation:
499
500
\begin{equation}
501
\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}
502
\end{equation}
503
504
\begin{pycode}
505
def heat_equation_1d(nx=50, nt=100, dx=0.02, dt=0.001, alpha=0.01):
506
"""
507
Solve 1D heat equation using finite differences
508
Demonstrates numerical methods used in CFD
509
"""
510
x = np.linspace(0, 1, nx)
511
T = np.zeros((nt, nx))
512
513
# Initial condition: Gaussian temperature distribution
514
T[0, :] = np.exp(-50 * (x - 0.5)**2)
515
516
# Boundary conditions (Dirichlet)
517
T[:, 0] = 0
518
T[:, -1] = 0
519
520
# Time stepping using explicit finite differences
521
r = alpha * dt / dx**2 # Stability parameter
522
523
for n in range(1, nt):
524
for i in range(1, nx-1):
525
T[n, i] = T[n-1, i] + r * (T[n-1, i+1] - 2*T[n-1, i] + T[n-1, i-1])
526
527
return x, T
528
529
# Solve heat equation
530
x, T_solution = heat_equation_1d()
531
532
# Plot temperature evolution
533
plt.figure(figsize=(12, 6))
534
535
plt.subplot(1, 2, 1)
536
time_steps = [0, 20, 50, 99]
537
for t in time_steps:
538
plt.plot(x, T_solution[t, :], label=f't = {t*0.001:.3f}s')
539
plt.xlabel('Position (x)')
540
plt.ylabel('Temperature')
541
plt.title('1D Heat Equation Solution')
542
plt.legend()
543
plt.grid(True, alpha=0.3)
544
545
plt.subplot(1, 2, 2)
546
X, T_time = np.meshgrid(x, np.linspace(0, 0.099, 100))
547
plt.contourf(X, T_time, T_solution, levels=20, cmap='hot')
548
plt.colorbar(label='Temperature')
549
plt.xlabel('Position (x)')
550
plt.ylabel('Time (s)')
551
plt.title('Temperature Evolution')
552
553
plt.tight_layout()
554
plt.savefig('heat_equation_solution.pdf', dpi=300, bbox_inches='tight')
555
plt.show()
556
557
print("Numerical Method Demonstration:")
558
print(f"Grid points: {len(x)}")
559
print(f"Time steps: {T_solution.shape[0]}")
560
print(f"Stability parameter r = {0.01 * 0.001 / 0.02**2:.3f} (should be <= 0.5)")
561
print(f"Maximum temperature at t=0: {T_solution[0, :].max():.3f}")
562
print(f"Maximum temperature at final time: {T_solution[-1, :].max():.3f}")
563
\end{pycode}
564
565
\begin{figure}[H]
566
\centering
567
\includegraphics[width=\textwidth]{heat_equation_solution.pdf}
568
\caption{Solution of the 1D heat equation demonstrating finite difference methods commonly used in CFD applications.}
569
\label{fig:heat_equation}
570
\end{figure}
571
572
\section{Conclusion}
573
574
This template demonstrates the integration of theoretical aerospace engineering concepts with computational analysis using Python and LaTeX. The combination of:
575
576
\begin{itemize}
577
\item NACA airfoil geometry generation and analysis
578
\item Aerodynamic performance calculations using thin airfoil theory
579
\item Turbojet engine performance modeling
580
\item Flight dynamics and stability analysis
581
\item Numerical methods for CFD applications
582
\end{itemize}
583
584
provides a comprehensive foundation for aerospace engineering reports that require both analytical and computational approaches. The PythonTeX integration allows for reproducible results and seamless combination of code, calculations, and professional documentation.
585
586
\section{References}
587
588
\begin{enumerate}
589
\item Anderson, J.D., \textit{Fundamentals of Aerodynamics}, 6th Edition, McGraw-Hill, 2017.
590
\item Mattingly, J.D., \textit{Elements of Propulsion: Gas Turbines and Rockets}, AIAA, 2006.
591
\item Etkin, B. and Reid, L.D., \textit{Dynamics of Flight: Stability and Control}, 3rd Edition, Wiley, 1996.
592
\item Blazek, J., \textit{Computational Fluid Dynamics: Principles and Applications}, 3rd Edition, Butterworth-Heinemann, 2015.
593
\end{enumerate}
594
595
\end{document}
596