ubuntu2404
\documentclass[11pt,a4paper]{article}12% Essential packages for aerospace engineering and CFD3\usepackage[utf8]{inputenc}4\usepackage[T1]{fontenc}5\usepackage{textcomp} % For additional text symbols6\usepackage{amsmath,amsfonts,amssymb}7\usepackage{graphicx}8\usepackage{booktabs}9\usepackage{siunitx}10\usepackage{float}11\usepackage[margin=1in]{geometry}12\usepackage{hyperref}1314% Python code execution with PythonTeX15\usepackage{pythontex}16\usepackage{fancyvrb}1718% Enhanced listings for code display19\usepackage{listings}20\usepackage{xcolor}2122% Configure listings for Python23\lstset{24language=Python,25basicstyle=\ttfamily\small,26keywordstyle=\color{blue},27stringstyle=\color{red},28commentstyle=\color{gray},29numberstyle=\tiny,30numbers=left,31frame=single,32breaklines=true33}3435% Title and author information36\title{Aerospace Engineering CFD Analysis Template}37\author{Your Name\\38Department of Aerospace Engineering\\39Your Institution}40\date{\today}4142\begin{document}4344\maketitle4546\begin{abstract}47This template demonstrates computational fluid dynamics (CFD) analysis techniques in aerospace engineering, including NACA airfoil analysis, aerodynamic performance calculations, propulsion system modeling, and flight dynamics simulations.4849The template integrates Python computations with LaTeX for reproducible aerospace engineering reports.50\end{abstract}5152\tableofcontents53\newpage5455\section{Introduction}5657Computational Fluid Dynamics (CFD) has become an essential tool in aerospace engineering for analyzing complex flow phenomena around aircraft, spacecraft, and propulsion systems.5859This template provides a foundation for aerospace engineering reports that combine theoretical analysis with computational results.6061\section{Aerodynamics Analysis}6263\subsection{NACA Airfoil Geometry}6465The NACA 4-digit series airfoils are widely used in aerospace applications. For a NACA MPXX airfoil, where M is the maximum camber percentage, P is the position of maximum camber, and XX is the thickness percentage.6667\begin{pycode}68import numpy as np69import matplotlib.pyplot as plt7071def naca_4digit(m, p, t, c=1.0, n=100):72"""73Generate NACA 4-digit airfoil coordinates74m: maximum camber (as fraction of chord)75p: position of maximum camber (as fraction of chord)76t: thickness (as fraction of chord)77c: chord length78n: number of points79"""80# Cosine spacing for better resolution near leading edge81beta = np.linspace(0, np.pi, n)82x = c * (1 - np.cos(beta)) / 28384# Thickness distribution85yt = 5 * t * c * (0.2969 * np.sqrt(x/c) -860.1260 * (x/c) -870.3516 * (x/c)**2 +880.2843 * (x/c)**3 -890.1015 * (x/c)**4)9091# Camber line92yc = np.zeros_like(x)93dyc_dx = np.zeros_like(x)9495if p > 0: # Cambered airfoil96# Forward of maximum camber97mask1 = x <= p * c98yc[mask1] = (m * c * x[mask1] / (p * c)**2 *99(2 * p * c - x[mask1]) / c**2)100dyc_dx[mask1] = 2 * m / p**2 * (p - x[mask1]/c)101102# Aft of maximum camber103mask2 = x > p * c104yc[mask2] = (m * c * (c - x[mask2]) / (1 - p)**2 / c**2 *105(1 + x[mask2]/c - 2*p))106dyc_dx[mask2] = 2 * m / (1 - p)**2 * (p - x[mask2]/c)107108# Surface coordinates109theta = np.arctan(dyc_dx)110xu = x - yt * np.sin(theta)111yu = yc + yt * np.cos(theta)112xl = x + yt * np.sin(theta)113yl = yc - yt * np.cos(theta)114115return xu, yu, xl, yl, x, yc116117# Generate NACA 2412 airfoil118xu, yu, xl, yl, x_camber, y_camber = naca_4digit(0.02, 0.4, 0.12)119120# Plot airfoil121plt.figure(figsize=(10, 6))122plt.plot(xu, yu, 'b-', linewidth=2, label='Upper surface')123plt.plot(xl, yl, 'r-', linewidth=2, label='Lower surface')124plt.plot(x_camber, y_camber, 'k--', linewidth=1, label='Camber line')125plt.xlabel('x/c')126plt.ylabel('y/c')127plt.title('NACA 2412 Airfoil Geometry')128plt.grid(True, alpha=0.3)129plt.legend()130plt.axis('equal')131plt.tight_layout()132plt.savefig('naca2412_geometry.pdf', dpi=300, bbox_inches='tight')133plt.show()134135print(f"NACA 2412 Airfoil Parameters:")136print(f"Maximum camber: 2% at 40% chord")137print(f"Maximum thickness: 12% chord")138print(f"Leading edge radius: {5 * 0.12**2:.4f}c")139\end{pycode}140141\begin{figure}[H]142\centering143\includegraphics[width=0.8\textwidth]{naca2412_geometry.pdf}144\caption{NACA 2412 airfoil geometry showing upper surface, lower surface, and camber line.}145\label{fig:naca2412}146\end{figure}147148\subsection{Aerodynamic Performance Analysis}149150\begin{pycode}151# Simplified thin airfoil theory calculations152def thin_airfoil_theory(alpha_deg, camber_max, camber_pos):153"""154Calculate lift coefficient using thin airfoil theory155alpha_deg: angle of attack in degrees156camber_max: maximum camber as fraction of chord157camber_pos: position of maximum camber as fraction of chord158"""159alpha_rad = np.radians(alpha_deg)160161# Lift curve slope (per radian)162a0 = 2 * np.pi163164# Zero-lift angle of attack for cambered airfoil165alpha_L0 = -2 * camber_max * (1 - 2 * camber_pos) / np.pi * np.pi/180166167# Lift coefficient168cl = a0 * (alpha_rad - alpha_L0)169170return cl, alpha_L0 * 180/np.pi171172# Performance analysis for NACA 2412173alpha_range = np.linspace(-5, 15, 21)174cl_values = []175alpha_L0_theory = None176177for alpha in alpha_range:178cl, alpha_L0 = thin_airfoil_theory(alpha, 0.02, 0.4)179cl_values.append(cl)180if alpha_L0_theory is None:181alpha_L0_theory = alpha_L0182183cl_values = np.array(cl_values)184185# Plot lift curve186plt.figure(figsize=(10, 6))187plt.plot(alpha_range, cl_values, 'bo-', linewidth=2, markersize=6,188label='Thin Airfoil Theory')189plt.axhline(y=0, color='k', linestyle='--', alpha=0.5)190plt.axvline(x=alpha_L0_theory, color='r', linestyle='--', alpha=0.7,191label=f'Zero-lift AoA = {alpha_L0_theory:.2f}°')192plt.xlabel('Angle of Attack (degrees)')193plt.ylabel('Lift Coefficient, $C_L$')194plt.title('NACA 2412 Lift Curve - Thin Airfoil Theory')195plt.grid(True, alpha=0.3)196plt.legend()197plt.tight_layout()198plt.savefig('naca2412_lift_curve.pdf', dpi=300, bbox_inches='tight')199plt.show()200201print(f"Aerodynamic Analysis Results:")202print(f"Zero-lift angle of attack: {alpha_L0_theory:.2f} degrees")203print(f"Lift curve slope: {2*np.pi:.3f} per radian "204f"({2*np.pi*180/np.pi:.1f} per degree)")205print(f"At alpha = 5 degrees: CL = {cl_values[np.argmin(np.abs(alpha_range - 5))]:.3f}")206\end{pycode}207208\begin{figure}[H]209\centering210\includegraphics[width=0.8\textwidth]{naca2412_lift_curve.pdf}211\caption{Lift coefficient variation with angle of attack for NACA 2412 airfoil using thin airfoil theory.}212\label{fig:lift_curve}213\end{figure}214215\section{CFD Analysis Fundamentals}216217\subsection{Governing Equations}218219The Navier-Stokes equations govern fluid flow in aerospace applications:220221\begin{align}222\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0 \label{eq:continuity}\\223\frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) &= -\nabla p + \nabla \cdot \boldsymbol{\tau} + \rho \mathbf{f} \label{eq:momentum}\\224\frac{\partial (\rho E)}{\partial t} + \nabla \cdot ((\rho E + p)\mathbf{u}) &= \nabla \cdot (\mathbf{k} \nabla T) + \nabla \cdot (\boldsymbol{\tau} \cdot \mathbf{u}) + \rho \mathbf{f} \cdot \mathbf{u} \label{eq:energy}225\end{align}226227where $\rho$ is density, $\mathbf{u}$ is velocity vector, $p$ is pressure, $\boldsymbol{\tau}$ is viscous stress tensor, $E$ is total energy per unit mass, and $\mathbf{f}$ represents body forces.228229\subsection{Dimensionless Parameters}230231Key dimensionless parameters in aerospace CFD:232233\begin{pycode}234import pandas as pd235236# Create table of important dimensionless parameters237parameters = {238'Parameter': ['Reynolds Number', 'Mach Number', 'Prandtl Number',239'Lift Coefficient', 'Drag Coefficient', 'Pressure Coefficient'],240'Symbol': ['$Re$', '$Ma$', '$Pr$', '$C_L$', '$C_D$', '$C_p$'],241'Definition': ['$\\frac{\\rho U L}{\\mu}$', '$\\frac{U}{a}$', '$\\frac{\\mu c_p}{k}$',242'$\\frac{L}{\\frac{1}{2}\\rho U^2 S}$', '$\\frac{D}{\\frac{1}{2}\\rho U^2 S}$',243'$\\frac{p - p_\\infty}{\\frac{1}{2}\\rho U^2}$'],244'Physical Meaning': ['Inertial/Viscous forces', 'Flow/Sound speed', 'Momentum/Thermal diffusivity',245'Lift/Dynamic pressure', 'Drag/Dynamic pressure', 'Local/Dynamic pressure']246}247248df = pd.DataFrame(parameters)249print("Key Dimensionless Parameters in Aerospace CFD:")250print("=" * 40)251for i, row in df.iterrows():252print(f"{row['Parameter']:<20} {row['Symbol']:<8} {row['Physical Meaning']}")253\end{pycode}254255\section{Propulsion Analysis}256257\subsection{Turbojet Engine Performance}258259\begin{pycode}260def turbojet_performance(Ma0, gamma=1.4, cp=1005, T0=288.15, pi_c=8, pi_b=0.95,261T04=1400, eta_c=0.85, eta_t=0.88, eta_n=0.98):262"""263Simplified turbojet engine performance analysis264Ma0: flight Mach number265gamma: specific heat ratio266cp: specific heat at constant pressure (J/kg/K)267T0: ambient temperature (K)268pi_c: compressor pressure ratio269pi_b: burner pressure ratio270T04: turbine inlet temperature (K)271eta_c: compressor efficiency272eta_t: turbine efficiency273eta_n: nozzle efficiency274"""275R = cp * (gamma - 1) / gamma276277# Station 0: Ambient conditions278T00 = T0 * (1 + (gamma - 1) / 2 * Ma0**2)279p00 = 101325 * (T00 / T0)**(gamma / (gamma - 1))280281# Station 2: Compressor exit (ideal)282T02_ideal = T00 * pi_c**((gamma - 1) / gamma)283T02 = T00 + (T02_ideal - T00) / eta_c284p02 = p00 * pi_c285286# Station 3: Burner exit287T03 = T04 # Assuming complete combustion288p03 = p02 * pi_b289290# Station 4: Turbine exit291# Work balance: turbine work = compressor work292T04_ideal = T03 - (T02 - T00) / eta_t293T04_actual = T03 - (T02 - T00) / eta_t294pi_t = (T04_actual / T03)**(gamma / (gamma - 1))295p04 = p03 * pi_t296297# Station 9: Nozzle exit298p9 = 101325 # Assume perfectly expanded299T09_ideal = T04_actual * (p9 / p04)**((gamma - 1) / gamma)300T9 = T04_actual - eta_n * (T04_actual - T09_ideal)301302# Exhaust velocity303V9 = np.sqrt(2 * cp * (T04_actual - T9))304305# Flight velocity306V0 = Ma0 * np.sqrt(gamma * R * T0)307308# Specific thrust and specific fuel consumption (simplified)309F_specific = V9 - V0 # N per kg/s of air310311return {312'V0': V0,313'V9': V9,314'F_specific': F_specific,315'T02': T02,316'T04': T04_actual,317'pi_c': pi_c,318'pi_t': pi_t319}320321# Performance analysis for different flight conditions322mach_numbers = np.linspace(0, 2.0, 21)323results = []324325for Ma in mach_numbers:326perf = turbojet_performance(Ma)327results.append([Ma, perf['F_specific'], perf['V9'], perf['V0']])328329results = np.array(results)330331# Plot performance332plt.figure(figsize=(12, 8))333334plt.subplot(2, 2, 1)335plt.plot(results[:, 0], results[:, 1], 'b-o', linewidth=2, markersize=4)336plt.xlabel('Flight Mach Number')337plt.ylabel('Specific Thrust (N·s/kg)')338plt.title('Turbojet Specific Thrust vs Flight Mach')339plt.grid(True, alpha=0.3)340341plt.subplot(2, 2, 2)342plt.plot(results[:, 0], results[:, 2], 'r-', linewidth=2, label='Exhaust Velocity')343plt.plot(results[:, 0], results[:, 3], 'g--', linewidth=2, label='Flight Velocity')344plt.xlabel('Flight Mach Number')345plt.ylabel('Velocity (m/s)')346plt.title('Velocities vs Flight Mach')347plt.legend()348plt.grid(True, alpha=0.3)349350plt.subplot(2, 2, 3)351efficiency = results[:, 1] * results[:, 3] / (0.5 * (results[:, 2]**2 - results[:, 3]**2))352plt.plot(results[:, 0], efficiency, 'purple', linewidth=2)353plt.xlabel('Flight Mach Number')354plt.ylabel('Propulsive Efficiency')355plt.title('Propulsive Efficiency vs Flight Mach')356plt.grid(True, alpha=0.3)357358plt.subplot(2, 2, 4)359thrust_ratio = results[:, 1] / results[0, 1] # Normalized to Ma=0360plt.plot(results[:, 0], thrust_ratio, 'orange', linewidth=2)361plt.xlabel('Flight Mach Number')362plt.ylabel('Normalized Specific Thrust')363plt.title('Thrust Variation with Altitude')364plt.grid(True, alpha=0.3)365366plt.tight_layout()367plt.savefig('turbojet_performance.pdf', dpi=300, bbox_inches='tight')368plt.show()369370print("Turbojet Performance Summary:")371print(f"Sea level static specific thrust: {results[0, 1]:.1f} N·s/kg")372print(f"Cruise (Ma=0.8) specific thrust: {results[16, 1]:.1f} N·s/kg")373print(f"Maximum analyzed Mach: {results[-1, 0]:.1f}")374\end{pycode}375376\begin{figure}[H]377\centering378\includegraphics[width=\textwidth]{turbojet_performance.pdf}379\caption{Turbojet engine performance characteristics showing specific thrust, velocities, propulsive efficiency, and thrust variation with flight Mach number.}380\label{fig:turbojet}381\end{figure}382383\section{Flight Dynamics}384385\subsection{Aircraft Stability Analysis}386387\begin{pycode}388def static_stability_analysis(cg_position, ac_position, cl_alpha, cm_alpha_wing,389cm_alpha_tail, tail_volume):390"""391Analyze longitudinal static stability392cg_position: center of gravity position (fraction of MAC)393ac_position: aerodynamic center position (fraction of MAC)394cl_alpha: lift curve slope (per radian)395cm_alpha_wing: wing pitching moment curve slope396cm_alpha_tail: tail pitching moment curve slope397tail_volume: tail volume coefficient398"""399400# Static margin401static_margin = ac_position - cg_position402403# Total pitching moment curve slope404cm_alpha_total = cm_alpha_wing + cm_alpha_tail * tail_volume405406# Neutral point407neutral_point = ac_position - cm_alpha_total / cl_alpha408409# Stability criterion410is_stable = static_margin > 0411412return {413'static_margin': static_margin,414'neutral_point': neutral_point,415'cm_alpha_total': cm_alpha_total,416'is_stable': is_stable417}418419# Example aircraft stability analysis420aircraft_data = {421'cg_range': np.linspace(0.20, 0.35, 100), # CG positions from 20% to 35% MAC422'ac_position': 0.25, # Aerodynamic center at 25% MAC423'cl_alpha': 2 * np.pi, # Lift curve slope424'cm_alpha_wing': -0.1, # Wing contribution425'cm_alpha_tail': -0.8, # Tail contribution426'tail_volume': 0.5 # Tail volume coefficient427}428429stability_results = []430for cg in aircraft_data['cg_range']:431result = static_stability_analysis(432cg, aircraft_data['ac_position'], aircraft_data['cl_alpha'],433aircraft_data['cm_alpha_wing'], aircraft_data['cm_alpha_tail'],434aircraft_data['tail_volume']435)436stability_results.append([cg, result['static_margin'], result['is_stable']])437438stability_results = np.array(stability_results)439440# Plot stability analysis441plt.figure(figsize=(12, 6))442443plt.subplot(1, 2, 1)444plt.plot(stability_results[:, 0] * 100, stability_results[:, 1] * 100,445'b-', linewidth=2)446plt.axhline(y=0, color='r', linestyle='--', linewidth=2, label='Neutral Stability')447stable_mask = stability_results[:, 1] > 0448plt.fill_between(stability_results[stable_mask, 0] * 100,449stability_results[stable_mask, 1] * 100,450alpha=0.3, color='green', label='Stable Region')451plt.xlabel('CG Position (% MAC)')452plt.ylabel('Static Margin (% MAC)')453plt.title('Longitudinal Static Stability')454plt.grid(True, alpha=0.3)455plt.legend()456457plt.subplot(1, 2, 2)458# Control authority analysis (simplified)459elevator_deflection = np.linspace(-20, 20, 41)460cm_delta_e = -0.02 # Elevator effectiveness (per degree)461trim_moments = []462463for delta_e in elevator_deflection:464cm_trim = cm_delta_e * delta_e465trim_moments.append(cm_trim)466467plt.plot(elevator_deflection, trim_moments, 'g-', linewidth=2,468label='Elevator Moment')469plt.axhline(y=0, color='k', linestyle='-', alpha=0.5)470plt.xlabel('Elevator Deflection (degrees)')471plt.ylabel('Pitching Moment Coefficient')472plt.title('Control Authority')473plt.grid(True, alpha=0.3)474plt.legend()475476plt.tight_layout()477plt.savefig('flight_dynamics_stability.pdf', dpi=300, bbox_inches='tight')478plt.show()479480print("Flight Dynamics Analysis:")481print(f"Aerodynamic center: {aircraft_data['ac_position']*100:.1f}% MAC")482print(f"Stable CG range: {stability_results[stable_mask, 0].min()*100:.1f}% to {stability_results[stable_mask, 0].max()*100:.1f}% MAC")483print(f"Maximum static margin: {stability_results[:, 1].max()*100:.1f}% MAC")484\end{pycode}485486\begin{figure}[H]487\centering488\includegraphics[width=\textwidth]{flight_dynamics_stability.pdf}489\caption{Longitudinal static stability analysis showing static margin variation with CG position and elevator control authority.}490\label{fig:stability}491\end{figure}492493\section{Computational Methods}494495\subsection{Finite Difference Discretization}496497For CFD applications, the governing equations are discretized using finite difference, finite volume, or finite element methods. A simple example of finite difference discretization for the 1D heat equation:498499\begin{equation}500\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}501\end{equation}502503\begin{pycode}504def heat_equation_1d(nx=50, nt=100, dx=0.02, dt=0.001, alpha=0.01):505"""506Solve 1D heat equation using finite differences507Demonstrates numerical methods used in CFD508"""509x = np.linspace(0, 1, nx)510T = np.zeros((nt, nx))511512# Initial condition: Gaussian temperature distribution513T[0, :] = np.exp(-50 * (x - 0.5)**2)514515# Boundary conditions (Dirichlet)516T[:, 0] = 0517T[:, -1] = 0518519# Time stepping using explicit finite differences520r = alpha * dt / dx**2 # Stability parameter521522for n in range(1, nt):523for i in range(1, nx-1):524T[n, i] = T[n-1, i] + r * (T[n-1, i+1] - 2*T[n-1, i] + T[n-1, i-1])525526return x, T527528# Solve heat equation529x, T_solution = heat_equation_1d()530531# Plot temperature evolution532plt.figure(figsize=(12, 6))533534plt.subplot(1, 2, 1)535time_steps = [0, 20, 50, 99]536for t in time_steps:537plt.plot(x, T_solution[t, :], label=f't = {t*0.001:.3f}s')538plt.xlabel('Position (x)')539plt.ylabel('Temperature')540plt.title('1D Heat Equation Solution')541plt.legend()542plt.grid(True, alpha=0.3)543544plt.subplot(1, 2, 2)545X, T_time = np.meshgrid(x, np.linspace(0, 0.099, 100))546plt.contourf(X, T_time, T_solution, levels=20, cmap='hot')547plt.colorbar(label='Temperature')548plt.xlabel('Position (x)')549plt.ylabel('Time (s)')550plt.title('Temperature Evolution')551552plt.tight_layout()553plt.savefig('heat_equation_solution.pdf', dpi=300, bbox_inches='tight')554plt.show()555556print("Numerical Method Demonstration:")557print(f"Grid points: {len(x)}")558print(f"Time steps: {T_solution.shape[0]}")559print(f"Stability parameter r = {0.01 * 0.001 / 0.02**2:.3f} (should be <= 0.5)")560print(f"Maximum temperature at t=0: {T_solution[0, :].max():.3f}")561print(f"Maximum temperature at final time: {T_solution[-1, :].max():.3f}")562\end{pycode}563564\begin{figure}[H]565\centering566\includegraphics[width=\textwidth]{heat_equation_solution.pdf}567\caption{Solution of the 1D heat equation demonstrating finite difference methods commonly used in CFD applications.}568\label{fig:heat_equation}569\end{figure}570571\section{Conclusion}572573This template demonstrates the integration of theoretical aerospace engineering concepts with computational analysis using Python and LaTeX. The combination of:574575\begin{itemize}576\item NACA airfoil geometry generation and analysis577\item Aerodynamic performance calculations using thin airfoil theory578\item Turbojet engine performance modeling579\item Flight dynamics and stability analysis580\item Numerical methods for CFD applications581\end{itemize}582583provides a comprehensive foundation for aerospace engineering reports that require both analytical and computational approaches. The PythonTeX integration allows for reproducible results and seamless combination of code, calculations, and professional documentation.584585\section{References}586587\begin{enumerate}588\item Anderson, J.D., \textit{Fundamentals of Aerodynamics}, 6th Edition, McGraw-Hill, 2017.589\item Mattingly, J.D., \textit{Elements of Propulsion: Gas Turbines and Rockets}, AIAA, 2006.590\item Etkin, B. and Reid, L.D., \textit{Dynamics of Flight: Stability and Control}, 3rd Edition, Wiley, 1996.591\item Blazek, J., \textit{Computational Fluid Dynamics: Principles and Applications}, 3rd Edition, Butterworth-Heinemann, 2015.592\end{enumerate}593594\end{document}595596