Westminster College- Math 203 demos
%auto
var('r, theta')
r=cos(2θ),0≤θ≤2πr = \cos{(2\theta)}, \quad 0 \leq \theta \leq 2\pir=cos(2θ),0≤θ≤2π
polar_plot(cos(2*theta), (theta, 0, 2*pi))
r=cos(3θ),0≤θ≤πr = \cos{(3\theta)}, \quad 0 \leq \theta \leq \pir=cos(3θ),0≤θ≤π
polar_plot(cos(3*theta), (theta, 0, pi))
r = theta polar_plot(r, (theta, 0, 10))
r=logθ,0≤θ≤30πr = \log{\theta}, \quad 0 \leq \theta \leq 30\pir=logθ,0≤θ≤30π
r= log(theta) polar_plot(r, (theta, 1, 30*pi), plot_points = 1000)
for n in range(-6,7): r = 1 + (n/2) * sin(theta); polar_plot(r, (theta, 0, 2*pi))
r=cos(5θ)+n2cosθ,0≤θ≤πr = \cos{(5\theta)} + \frac{n}{2}\cos{\theta}, \quad 0 \leq \theta \leq \pir=cos(5θ)+2ncosθ,0≤θ≤π
for values of nnn between -10 and 10.
for n in range(-10, 11): r = cos(5 * theta) + (n/2) * cos(theta); polar_plot(r, (theta, 0, pi))
r = 1 - cos(1.01 * theta) - 0.2 * cos(8 * theta) polar_plot(r, (theta, 0, 400*pi), plot_points = 8000, figsize = 8, thickness = 0.2)
r = exp(sin(theta)) - 2 * cos(4 * theta); polar_plot(r, (theta, 0, 2*pi), figsize = 8)
r = exp(sin(theta)) - 2 * cos(4 * theta) + (sin(theta/12))^5 polar_plot(r, (theta, 0, 24*pi), figsize = 8)