Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
| Download
Project: tests and ideas
Path: dask.ipynb
Views: 588Kernel: Python 3 (Ubuntu Linux)
In [1]:
'1.0.0'
In [2]:
<dask.config.set at 0x7f063001f748>
In [3]:
{'logging': {'distributed': 'info',
'distributed.client': 'warning',
'bokeh': 'critical',
'tornado': 'critical',
'tornado.application': 'error'},
'require-encryption': False,
'client-heartbeat-interval': 5000,
'distributed': {'version': 2,
'scheduler': {'allowed-failures': 3,
'bandwidth': 100000000,
'default-data-size': 1000,
'transition-log-length': 100000,
'work-stealing': True,
'worker-ttl': None,
'preload': [],
'preload-argv': []},
'worker': {'multiprocessing-method': 'forkserver',
'use-file-locking': True,
'connections': {'outgoing': 50, 'incoming': 10},
'preload': [],
'preload-argv': [],
'profile': {'interval': 10, 'cycle': 1000},
'memory': {'target': 0.6, 'spill': 0.7, 'pause': 0.8, 'terminate': 0.95}},
'client': {'heartbeat': '5s'},
'comm': {'compression': 'auto',
'default-scheme': 'tcp',
'socket-backlog': 2048,
'recent-messages-log-length': 0,
'timeouts': {'connect': 3, 'tcp': 30}},
'dashboard': {'link': 'http://{host}:{port}/status', 'export-tool': False},
'admin': {'tick': {'interval': 20, 'limit': 1000},
'log-length': 10000,
'log-format': '%(name)s - %(levelname)s - %(message)s',
'pdb-on-err': False}},
'temporary-directory': '/home/user/tmp',
'scheduler': {'work-stealing': True}}
In [4]:
The dashboard is actually at https://cocalc.com/{{ THE PROJECT UUID }}/server/8787/status
Websocket forwarding doesn't work, though ... hmm...
alternatively, start an X11 desktop in cocalc and run google-chrome
at http://127.0.0.1:8787/status
data array similar to numpy arrays
In [5]:
In [6]:
dask.array<random_sample, shape=(3000, 3000), dtype=float64, chunksize=(300, 300)>
In [7]:
dask.array<mean_agg-aggregate, shape=(60,), dtype=float64, chunksize=(6,)>
In [8]:
(60,)
In [9]:
array([1.00894334, 0.98686389, 1.00412201, 1.00562101, 0.9984469 ,
1.00773417, 1.0017398 , 0.99675565, 0.99054068, 0.98704365,
0.99406761, 1.01857855, 1.00252324, 1.00853879, 0.98123995,
0.99701221, 0.99059657, 0.99144697, 1.00628833, 0.9947498 ,
0.99845961, 1.01338604, 1.00216002, 0.99366811, 0.99538552,
1.03424335, 1.00016978, 0.99584787, 0.99663896, 1.0028844 ,
0.99098811, 0.9955956 , 0.99308403, 1.01371317, 1.0229804 ,
0.99350163, 1.00235196, 1.00826049, 0.9949777 , 0.98840276,
1.00248748, 1.01109067, 1.01085646, 1.01437783, 1.00604058,
0.99871721, 1.00370476, 0.99210787, 1.00258028, 0.99557382,
1.0012086 , 0.99908451, 0.98371352, 1.00652402, 0.9849942 ,
1.0135658 , 0.98824092, 0.99474543, 1.00656597, 0.9921391 ])
In [10]:
1.0002978610915068
functions and native lists
In [11]:
-1750
In [12]:
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
loops?
In [13]:
In [14]:
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
Dask Bags
In [15]:
dask.bag<from_se..., npartitions=50>
In [16]:
In [17]:
[(True, -1000), (False, 0)]
Dask Delayed
In [18]:
In [19]:
In [20]:
30
In [21]:
Delayed('vizualize-38f8c38e-2766-4979-aa1d-a76835e14c0f')
In [22]:
In [23]:
In [24]:
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1.0, max_iter=100, multiclass='ovr', n_jobs=1,
penalty='l2', random_state=None, solver='admm',
solver_kwargs=None, tol=0.0001, verbose=0, warm_start=False)
In [25]:
<sklearn.externals.joblib._dask.DaskDistributedBackend object at 0x7f0611245d68>
In [0]:
In [0]:
In [0]:
In [0]: