Kernel: Python 3 (system-wide)
Numpyro on CoCalc
examples taken from https://num.pyro.ai/en/latest/tutorials/bayesian_regression.html
In [23]:
Out[23]:
'0.8.0'
In [1]:
Out[1]:
/usr/local/lib/python3.8/dist-packages/jax/experimental/optimizers.py:28: FutureWarning: jax.experimental.optimizers is deprecated, import jax.example_libraries.optimizers instead
warnings.warn('jax.experimental.optimizers is deprecated, '
/usr/local/lib/python3.8/dist-packages/jax/experimental/stax.py:28: FutureWarning: jax.experimental.stax is deprecated, import jax.example_libraries.stax instead
warnings.warn('jax.experimental.stax is deprecated, '
In [2]:
Out[2]:
In [3]:
Out[3]:
In [4]:
Out[4]:
In [5]:
In [6]:
In [7]:
Out[7]:
sample: 100%|██████████| 3000/3000 [00:04<00:00, 608.52it/s, 3 steps of size 7.86e-01. acc. prob=0.92]
mean std median 5.0% 95.0% n_eff r_hat
a 0.01 0.11 0.01 -0.17 0.19 1511.88 1.00
bM 0.35 0.13 0.35 0.14 0.57 1694.14 1.00
sigma 0.95 0.10 0.94 0.78 1.10 1696.30 1.00
Number of divergences: 0
In [8]:
Out[8]:
In [9]:
Out[9]:
In [10]:
Out[10]:
In [11]:
In [12]:
Out[12]:
In [13]:
Out[13]:
In [14]:
In [15]:
Out[15]:
Log posterior predictive density: -66.6878890991211
In [16]:
Out[16]:
sample: 100%|██████████| 3000/3000 [00:05<00:00, 599.87it/s, 3 steps of size 7.32e-01. acc. prob=0.92]
mean std median 5.0% 95.0% n_eff r_hat
a -0.00 0.10 -0.01 -0.17 0.17 2028.08 1.00
bA -0.57 0.11 -0.57 -0.74 -0.38 1974.47 1.00
sigma 0.82 0.08 0.82 0.68 0.95 1860.86 1.00
Number of divergences: 0
In [17]:
Out[17]:
In [18]:
Out[18]:
In [19]:
Out[19]:
Log posterior predictive density: -59.274169921875
In [20]:
Out[20]:
sample: 100%|██████████| 3000/3000 [00:05<00:00, 589.76it/s, 7 steps of size 5.67e-01. acc. prob=0.92]
mean std median 5.0% 95.0% n_eff r_hat
a 0.00 0.10 0.00 -0.17 0.17 2005.88 1.00
bA -0.61 0.15 -0.61 -0.87 -0.37 1496.72 1.00
bM -0.07 0.15 -0.07 -0.34 0.17 1526.17 1.00
sigma 0.83 0.09 0.82 0.69 0.96 1752.97 1.00
Number of divergences: 0
In [21]:
Out[21]:
Log posterior predictive density: -59.02093505859375
In [22]:
Out[22]:
In [0]: