Contact Us!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

| Download
Views: 39
Image: ubuntu2204
Kernel: SageMath 10.3

Stokes' Theorem

The curl vector

Green's theorem (in a plane) CFdr=R(NxMy)dxdy\oint_C\vec F\cdot d\vec r=\iint_R\left({\partial N\over \partial x}-{\partial M\over\partial y}\right)dxdy It measures the rotation rate of F\vec F around an axis parallel to k\vec k.

How to extend it to a general surface?

When viewed looking down, the vector points in the direction for which the rotation is counterclockwise.

The curl vector for the vector field F=Mi+Nj+Pk\vec F=M\vec i+N\vec j+P\vec k is curl F=(PyNz)i+(MzPx)j+(NxMy)k\mbox{curl }\vec F=\left({\partial P\over \partial y}-{\partial N\over \partial z}\right)\vec i +\left({\partial M\over \partial z}-{\partial P\over \partial x}\right)\vec j+\left({\partial N\over \partial x}-{\partial M\over \partial y}\right)\vec k

Definition (pronounced 'del') =ix+jy+kz\nabla =\vec i {\partial \over \partial x}+\vec j {\partial \over \partial y}+\vec k {\partial \over \partial z} Then the curl of F\vec F is curl F=×F=ijkxyzMNP\mbox{curl }\vec F=\nabla \times \vec F=\begin{vmatrix} \vec i & \vec j & \vec k\\ {\partial \over \partial x} & {\partial\over\partial y}&{\partial\over\partial z}\\ M & N & P \end{vmatrix}

Example: Find the curl of F=(x2z)i+xezj+xyk\vec F=(x^2-z)\vec i+xe^z\vec j+xy\vec k

Solution:

curl F=×F=ijkxyzx2zxezxy=(xxez)i+(1y)j+(ez)k\begin{align*} \mbox{curl }\vec F=\nabla \times \vec F=\begin{vmatrix} \vec i & \vec j & \vec k\\ {\partial \over \partial x} & {\partial\over\partial y}&{\partial\over\partial z}\\ x^2-z & xe^z & xy \end{vmatrix}=(x-xe^z)\vec i+(-1-y)\vec j+(e^z)\vec k \end{align*}
reset() var('x, y, z') F(x,y,z) = vector((x^2-z, x*e^z, x*y)) show('The curl of F is', F.curl((x,y,z)))

The curl of F is(x,y,z)  (xez+x,y1,ez)\displaystyle \verb|The|\verb| |\verb|curl|\verb| |\verb|of|\verb| |\verb|F|\verb| |\verb|is| \left( x, y, z \right) \ {\mapsto} \ \left(-x e^{z} + x,\,-y - 1,\,e^{z}\right)

Stokes' theorem

Theorem (Theorem 6 - Stokes' Theorem)

Let SS be a piecewise smooth oriented surface having a piecewise smooth boundary curve CC. Let F=Mi+Nj+Pk\vec F = M \vec i + N \vec j + P \vec k be a vector field whose components have continuous first partial derivatives on an open region containing SS. Then the circulation of F\vec F around CC in the direction counterclockwise with respect to the surface's unit normal vector n\vec n equals the integral of the curl vector field ×F\nabla \times \vec F over SS: CFdrcounterclockwise=S×Fndσcurl integral\underbrace{\oint_C\vec F\cdot d\vec r}_{\mbox{counterclockwise}}=\underbrace{\iint_S\nabla \times \vec F\cdot \vec n d\sigma}_{\mbox{curl integral}}

  • Surface independent S1×Fn1dσ=S2×Fn2dσ.\iint_{S_1}\nabla \times \vec F\cdot \vec n_1d\sigma = \iint_{S_2}\nabla \times \vec F\cdot \vec n_2d\sigma.

  • Analogous to a path independent for F:=f\vec{F}:=\nabla f.

  • Green's theorem is a special case of Stokes' theorem. Let CC be a curve in the xyxy-plan, oriented counterclockwise, and RR is the region in the xyxy-plane bounded by CC. Then we have CFdr=R(NxMy)dxdy=S×Fkdσ\oint_C\vec F\cdot d\vec r=\iint_R\left({\partial N\over \partial x}-{\partial M\over\partial y}\right)dxdy=\iint_S\nabla \times \vec F\cdot \vec k d\sigma

Stokes' theorem for surfaces with holes

Stokes’ Theorem holds for an oriented surface SS that has one or more holes. The surface integral over SS of the normal component of ×F\nabla \times \vec F equals the sum of the line integrals around all the boundary curves of the tangential component of F\vec F, where the curves are to be traced in the direction induced by the orientation of SS. For such surfaces the theorem is unchanged, but CC is considered as a union of simple closed curves.

Example: Verify Stokes' theorem: the hemisphere S:x2+y2+z2=9S: x^2 + y^2 + z^2 = 9, z0z\geq 0, its bounding circle C:x2+y2=9, z=0C: x^2 + y^2 = 9,~z = 0, and the field F=yixj\vec F = y\vec i - x\vec j.

Solution: We calculate the counterclockwise circulation around C (as viewed from above):

r(θ)=3cosθi+3sinθj,0θ2π\vec r(\theta)=3\cos \theta\vec i+3\sin \theta \vec j,\quad 0\leq \theta\leq 2\piFdr=9sin2dθ9cos2dθ=9dθ\vec F \cdot d \vec r = -9\sin^2 d \theta -9\cos^2 d \theta = -9 d \thetaCFdr=02π9dθ=18π\oint_C \vec F \cdot dr = \int_0^{2\pi} -9 d\theta = -18 \pi

For the curl integral of F\vec F, we have:

×F=(00)i+(00)j+(11)k=2k\nabla \times \vec F = (0-0)\vec i + (0-0)\vec j + (-1-1)\vec k = -2\vec kn=xi+yj+zk3\vec n = {x\vec i + y\vec j + z\vec k \over 3}dσ=3zdAd\sigma ={3 \over z} dA

Thus

S(×F)ndσ=x2+y292dA=18π\iint_S (\nabla \times \vec F) \cdot \vec n d \sigma = \iint_{x^2+y^2 \leq 9} -2 dA = -18 \pi
reset() var('x, y, z, t') r = vector((3*cos(t), 3*sin(t), 0)) show('r(t) =', r, 'for 0 <= t <= 2pi') F(x,y,z) = vector((y, -x, 0)) Ft = F(r[0], r[1], r[2]) # Note that the index starts at 0. show('F(t) =', Ft) res = integral(Ft.dot_product(diff(r,t)), t, 0, 2*pi) print('The line integral over C is', res.full_simplify()) h(x,y,z) = x^2+y^2+z^2-9 # Express z as a function of x and y vn = h.diff() #vn = vn/vn.norm() # normalize it to a unit vector Fcurl = F.curl((x,y,z)) assume(x^2+y^2<9) hz(x,y) = sqrt(9-x^2-y^2) show(h.diff().norm()(z=hz(x,y))) show('The surface integral is ', (Fcurl.dot_product(vn)(z=hz(x,y))/vn[2](z=hz(x,y))).integral(y, -sqrt(9-x^2), sqrt(9-x^2), algorithm='giac').integral(x, -3, 3, algorithm='giac'))

r(t) =(3cos(t),3sin(t),0)for 0 <= t <= 2pi\displaystyle \verb|r(t)|\verb| |\verb|=| \left(3 \, \cos\left(t\right),\,3 \, \sin\left(t\right),\,0\right) \verb|for|\verb| |\verb|0|\verb| |\verb|<=|\verb| |\verb|t|\verb| |\verb|<=|\verb| |\verb|2pi|

F(t) =(3sin(t),3cos(t),0)\displaystyle \verb|F(t)|\verb| |\verb|=| \left(3 \, \sin\left(t\right),\,-3 \, \cos\left(t\right),\,0\right)

The line integral over C is -18*pi

2x2+y2+x2y2+9\displaystyle 2 \, \sqrt{{\left| x \right|}^{2} + {\left| y \right|}^{2} + {\left| -x^{2} - y^{2} + 9 \right|}}

The surface integral is18π\displaystyle \verb|The|\verb| |\verb|surface|\verb| |\verb|integral|\verb| |\verb|is| -18 \, \pi

Example: Find the circulation of F=(x2y)i+4zj+x2k\vec F = (x^2 - y)\vec i + 4z \vec j + x^2\vec k around the curve CC in which the plane z=2z = 2 meets the cone z=x2+y2z = \sqrt{x^2 + y^2}, counterclockwise as viewed from above.

Solution:

r(r,θ)=rcosθi+rsinθj+rk,rr×rθ=rcosθirsinθj+rkn=12cosθi12sinθj+12k×F=4i2xj+k=4i2rcosθj+k\begin{align*} \vec r(r,\theta)=&r\cos\theta\vec i+r\sin\theta\vec j+r\vec k,\\ \vec r_r\times \vec r_\theta =&-r\cos\theta\vec i-r\sin\theta\vec j+r\vec k \\ \vec{n} =& -{1\over\sqrt{2}}\cos\theta\vec i-{1\over\sqrt{2}}\sin\theta\vec j+{1\over\sqrt{2}}\vec k\\ \nabla \times \vec F =& -4\vec i -2x\vec j + \vec k\\ =&-4\vec i-2r\cos\theta\vec j +\vec k \end{align*}r(θ)=2cosθi+2sinθj+2k\vec r(\theta)=2\cos\theta\vec i+2\sin\theta\vec j+2\vec k02π(4cos2θ2sinθ)(2sinθ)+82cosθdθ=4π\begin{align*} \int_0^{2\pi} (4\cos^2\theta-2\sin\theta)(-2\sin\theta)+8\cdot 2\cos\theta d\theta=4\pi \end{align*}
reset() var('x, y, z, t') r = vector((2*cos(t), 2*sin(t), 2)) show('r(t) =', r, 'for 0 <= t <= 2pi') F(x,y,z) = vector((x^2-y, 4*z, x^2)) Ft = F(r[0], r[1], r[2]) # Note that the index starts at 0. show('F(t) =', Ft) res = integral(Ft.dot_product(diff(r,t)), t, 0, 2*pi) print('The line integral over C is', res.full_simplify()) Fcurl = F.curl((x,y,z)) h(x,y,z) = sqrt(x^2+y^2)-z # Express z as a function of x and y vn = h.diff() #vn = vn/vn.norm() # normalize it to a unit vector hz(x,y) = sqrt(x^2+y^2) # Express z as a function of x and y show('The surface integral is ', (Fcurl.dot_product(vn)(z=hz(x,y))/vn[2](z=hz(x,y))).integral(y, -sqrt(4-x^2), sqrt(4-x^2)).integral(x, -2, 2))

r(t) =(2cos(t),2sin(t),2)for 0 <= t <= 2pi\displaystyle \verb|r(t)|\verb| |\verb|=| \left(2 \, \cos\left(t\right),\,2 \, \sin\left(t\right),\,2\right) \verb|for|\verb| |\verb|0|\verb| |\verb|<=|\verb| |\verb|t|\verb| |\verb|<=|\verb| |\verb|2pi|

F(t) =(4cos(t)22sin(t),8,4cos(t)2)\displaystyle \verb|F(t)|\verb| |\verb|=| \left(4 \, \cos\left(t\right)^{2} - 2 \, \sin\left(t\right),\,8,\,4 \, \cos\left(t\right)^{2}\right)

The line integral over C is 4*pi

The surface integral is4π\displaystyle \verb|The|\verb| |\verb|surface|\verb| |\verb|integral|\verb| |\verb|is| 4 \, \pi

Example: Verify Stokes' theorem for SS using the vector field F=yixj+x2k\vec F = y\vec i - x\vec j + x^2\vec k, where SS is formed by the part of the hyperbolic paraboloid z=y2x2z = y^2 - x^2 lying inside the cylinder of radius one around the zz-axis.

Solution:

Find a parametrization for the surface SS formed by the part of the hyperbolic paraboloid z=y2x2z = y^2 - x^2 lying inside the cylinder of radius one around the zz-axis.

r(r,θ)=rcosθi+rsinθj+r2(sin2θcos2θ)k, 0θ2π, 0r1\begin{align*} \vec r(r,\theta)=&r\cos \theta\vec i+r\sin \theta\vec j+r^2(\sin^2\theta-\cos^2\theta)\vec k,\\ &~0\leq \theta\leq 2\pi,~0\leq r\leq 1 \end{align*}×F=2xi2k=2rcosθj2krr×rθ=2r2cosθi2r2sinθj+rk02π01(4r3sinθcosθ2r)drdθ=2π\begin{align*} \nabla \times \vec F=&-2x\vec i -2\vec k=-2r\cos\theta \vec j-2\vec k\\ \vec r_r\times \vec r_\theta = & 2r^2\cos\theta\vec i-2r^2\sin\theta \vec j+r\vec k\\ \int_0^{2\pi}\int_0^1&(4r^3\sin\theta\cos\theta -2r)drd\theta=-2\pi \end{align*}

Find a parametrization for the boundary curve CC of the surface SS.

r(t)=costi+sintj+(sin2tcos2t)k, 0t2π\begin{align*} \vec r(t)=&\cos t\vec i+\sin t\vec j+(\sin^2t-\cos^2t)\vec k,\\ &~0\leq t\leq 2\pi \end{align*}CFdr=02π(4sintcos3t1)dt=2π.\begin{align*} \oint_C\vec F\cdot d\vec r=&\int_0^{2\pi}(4\sin t\cos^3t-1)dt=-2\pi. \end{align*}
reset() var('x, y, z, t') r = vector((cos(t), sin(t), sin(t)^2-cos(t)^2)) show('r(t) =', r, 'for 0 <= t <= 2pi') F(x,y,z) = vector((y, -x, x^2)) Ft = F(r[0], r[1], r[2]) # Note that the index starts at 0. show('F(t) =', Ft) res = integral(Ft.dot_product(diff(r,t)), t, 0, 2*pi) print('The line integral over C is', res.full_simplify()) Fcurl = F.curl((x,y,z)) h(x,y,z) = y^2-x^2-z # Express z as a function of x and y vn = h.diff() #vn = vn/vn.norm() # normalize it to a unit vector hz(x,y) = y^2-x^2 # Express z as a function of x and y show('The surface integral is ', (Fcurl.dot_product(vn)(z=hz(x,y))/vn[2](z=hz(x,y))).integral(y, -sqrt(1-x^2), sqrt(1-x^2)).integral(x, -1, 1))

r(t) =(cos(t),sin(t),cos(t)2+sin(t)2)for 0 <= t <= 2pi\displaystyle \verb|r(t)|\verb| |\verb|=| \left(\cos\left(t\right),\,\sin\left(t\right),\,-\cos\left(t\right)^{2} + \sin\left(t\right)^{2}\right) \verb|for|\verb| |\verb|0|\verb| |\verb|<=|\verb| |\verb|t|\verb| |\verb|<=|\verb| |\verb|2pi|

F(t) =(sin(t),cos(t),cos(t)2)\displaystyle \verb|F(t)|\verb| |\verb|=| \left(\sin\left(t\right),\,-\cos\left(t\right),\,\cos\left(t\right)^{2}\right)

The line integral over C is -2*pi

The surface integral is2π\displaystyle \verb|The|\verb| |\verb|surface|\verb| |\verb|integral|\verb| |\verb|is| -2 \, \pi

Example: Calculate the circulation of the vector field F=(x2+z)i+(y2+2x)j+(z2y)k\vec F=(x^2+z)\vec i+(y^2+2x)\vec j+(z^2-y)\vec kalong the curve of intersection of the sphere x2+y2+z2=1x^2+y^2+z^2=1 with the cone z=x2+y2z = \sqrt{x^2 + y^2} traversed in the counterclockwise direction around the zz-axis when viewed from above.

Solution:

×F=i+j+2k,n=kCFdr=S×Fndσ=S2dσ=π\begin{align*} \nabla \times \vec F=&-\vec i+\vec j+2\vec k,\quad \vec n=\vec k\\ \oint_C\vec F\cdot d\vec r=&\iint_S\nabla\times\vec F\cdot\vec n d\sigma\\ =&\iint_S2d\sigma=\pi \end{align*}
reset() var('x, y, z, t') r = vector((cos(t)/sqrt(2), sin(t)/sqrt(2), 1/sqrt(2))) show('r(t) =', r, 'for 0 <= t <= 2pi') F(x,y,z) = vector((x^2+z, y^2+2*x, z^2-y)) Ft = F(r[0], r[1], r[2]) # Note that the index starts at 0. show('F(t) =', Ft) res = integral(Ft.dot_product(diff(r,t)), t, 0, 2*pi) print('The line integral over C is', res.full_simplify()) Fcurl = F.curl((x,y,z)) h(x,y,z) = x^2+y^2+z^2-1 # Express z as a function of x and y vn = h.diff() #vn = vn/vn.norm() # normalize it to a unit vector hz(x,y) = sqrt(1-x^2-y^2) # Express z as a function of x and y show('The surface integral is ', (Fcurl.dot_product(vn)(z=hz(x,y))/vn[2](z=hz(x,y))).integral(y, -sqrt(1/2-x^2), sqrt(1/2-x^2), algorithm='giac').integral(x, -1/sqrt(2), 1/sqrt(2),algorithm='giac'))

r(t) =(122cos(t),122sin(t),122)for 0 <= t <= 2pi\displaystyle \verb|r(t)|\verb| |\verb|=| \left(\frac{1}{2} \, \sqrt{2} \cos\left(t\right),\,\frac{1}{2} \, \sqrt{2} \sin\left(t\right),\,\frac{1}{2} \, \sqrt{2}\right) \verb|for|\verb| |\verb|0|\verb| |\verb|<=|\verb| |\verb|t|\verb| |\verb|<=|\verb| |\verb|2pi|

F(t) =(12cos(t)2+122,12sin(t)2+2cos(t),122sin(t)+12)\displaystyle \verb|F(t)|\verb| |\verb|=| \left(\frac{1}{2} \, \cos\left(t\right)^{2} + \frac{1}{2} \, \sqrt{2},\,\frac{1}{2} \, \sin\left(t\right)^{2} + \sqrt{2} \cos\left(t\right),\,-\frac{1}{2} \, \sqrt{2} \sin\left(t\right) + \frac{1}{2}\right)

The line integral over C is pi

The surface integral isπ\displaystyle \verb|The|\verb| |\verb|surface|\verb| |\verb|integral|\verb| |\verb|is| \pi

Find ×F\nabla \times \vec F and relate it to the circulation density 1πρ2CFdr{1\over \pi\rho^2}\oint_C \vec F\cdot d\vec r, where CC is a circle of radius ρ\rho in the xyxy-plane.

Assume that a fluid of constant density rotates around the zz-axis with velocity F=w(yi+xj)\vec F = w(-y\vec i + x\vec j), where ww is the angular velocity of the rotation.

From the computation, we have ×F=2wk \nabla \times \vec F = 2w \vec k

For circle CC of radius ρ\rho CFdr=S×Fndσ=(2w)(πρ2)\begin{align*} %\nabla \times \vec F =& 2w\vec k\\ \oint_C\vec F\cdot d\vec r=& \iint_S\nabla\times \vec F\cdot \vec n d\sigma=(2w)(\pi\rho^2) \end{align*} Thus (×F)k=2w=1πρ2CFdr (\nabla \times \vec F) \cdot \vec k = 2w = {1 \over \pi \rho^2} \oint_C \vec F \cdot dr

Paddle wheel interpretation of ×F\nabla \times \vec F

We fix a point QQ in the region RR and a direction u\vec u. Take CC as a circle of radius ρ\rho, with center at QQ, whose plane is normal to u\vec u.

If ×F\nabla \times \vec F is continuous at QQ, the average value of the u\vec u-component of ×F\nabla\times \vec F over the circular disk SS bounded by CC approaches the u\vec u-component of ×F\nabla\times \vec F at QQ as the radius ρ0\rho\rightarrow 0: (×Fu)Q=limρ01πρ2S×Fudσ=limρ01πρ2CFdr.\begin{align*} (\nabla \times \vec F\cdot\vec u)_Q=&\lim_{\rho\rightarrow0}{1\over\pi\rho^2}\iint_S\nabla \times \vec F\cdot \vec u d\sigma=\lim_{\rho\rightarrow0}{1\over\pi\rho^2}\oint_C \vec F\cdot d\vec r. \end{align*}

circulation density: the circulation around CC divided by the area of the disk limρ01πρ2CFdr\lim_{\rho\rightarrow0}{1\over\pi\rho^2}\oint_C \vec F\cdot d\vec r

Example: Use Stokes' theorem to evaluate CFdr\oint_C \vec F\cdot d\vec r with F=xzi+xyj+3xzk\vec F = xz\vec i + xy\vec j + 3xz\vec k, where CC is the boundary of the portion of the plane 2x+y+z=22x + y + z = 2 in the first octant, traversed counterclockwise as viewed from above.

Solution: Since the surface is a triangle, and we need to compute three integrals to find the line integral. However, we can use the Stokes' theorem to compute the surface integral instead. n=16(2i+j+k)×F=(x3z)j+ykCFdr=S×Fndσ=01022x(7x+4y6)dydx=1\begin{align*} \vec n=&{1\over\sqrt{6}}(2\vec i+\vec j+\vec k)\\ \nabla\times \vec F=& (x-3z)\vec j+y\vec k\\ \oint_C\vec F\cdot d\vec r=&\iint_S\nabla\times F\cdot \vec n d\sigma \\ =&\int_0^1\int_0^{2-2x}(7x+4y-6)dydx\\ =&-1 \end{align*}

reset() var('x, y, z, length, theta') vn = vector((2,1,1)) vn = vn/vn.norm() # normalize it to a unit vector F = vector((x*z, x*y, 3*x*z)) Fcurl = F.curl((x,y,z)) h(x,y) = 2-2*x-y # Express z as a function of x and y show('The surface integral is ', (Fcurl.dot_product(vn)(z=h(x,y))*sqrt(h.diff(x)^2+h.diff(y)^2+1)).integral(y, 0, 2-2*x).integral(x, 0, 1))

The surface integral is1\displaystyle \verb|The|\verb| |\verb|surface|\verb| |\verb|integral|\verb| |\verb|is| -1

Example: Find the flux of ×F\nabla \times\vec F across SS in the direction n\vec n for F=yixzj+xz2k\vec F = y\vec i - xz\vec j + xz^2\vec k. The surface SS is the elliptical paraboloid z=x2+4y2z = x^2 + 4y^2 lying beneath the plane z=1z = 1. We define the orientation of SS by taking the inner normal vector n\vec n to the surface, which is the normal having a positive k\vec k-component.

Solution: By the Stokes' theorem, we can find the line integral instead. We need to find a parametrization for the loop. r(t)=costi+12sintj+k, 0t2πr(t)=sinti+12costjF(r(t))=12sinticostj+costkS(×F)ndA=CFdr=02π12dt=π\begin{align*} \vec r(t)=&\cos t\vec i+{1\over 2}\sin t\vec j+\vec k,~0\leq t\leq 2\pi\\ \vec r'(t)=&-\sin t\vec i+{1\over 2}\cos t\vec j\\ \vec F(\vec r(t))=&{1\over2}\sin t\vec i-\cos t\vec j+\cos t\vec k\\ \iint_S(\nabla\times \vec F)\cdot\vec n &dA=\oint_C\vec F\cdot d\vec r \\ =& \int_0^{2\pi}{-1\over 2}dt=-\pi \end{align*}

reset() var('x, y, z, t') r = vector((cos(t), sin(t)/2, 1)) show('r(t) =', r, 'for 0 <= t <= 2pi') F(t) = vector((r[1], -r[0]*r[2], r[0]*r[2]^2)) # Note that the index starts at 0. show('F(t) =', F(t)) res = integral(F(t).dot_product(diff(r,t)), t, 0, 2*pi) print('The line integral over C is', res.full_simplify())

r(t) =(cos(t),12sin(t),1)for 0 <= t <= 2pi\displaystyle \verb|r(t)|\verb| |\verb|=| \left(\cos\left(t\right),\,\frac{1}{2} \, \sin\left(t\right),\,1\right) \verb|for|\verb| |\verb|0|\verb| |\verb|<=|\verb| |\verb|t|\verb| |\verb|<=|\verb| |\verb|2pi|

F(t) =(12sin(t),cos(t),cos(t))\displaystyle \verb|F(t)|\verb| |\verb|=| \left(\frac{1}{2} \, \sin\left(t\right),\,-\cos\left(t\right),\,\cos\left(t\right)\right)

The line integral over C is -pi

An important identity

×f=0\nabla \times \nabla f=\vec{0}

Theorem If ×F=0\nabla\times F=\vec{0} at every point of a simply connected open region DD in space, then on any piecewise smooth closed path CC in DD, CFdr=S(×F)ndσ=S0ndσ=0.\oint_C\vec F \cdot d\vec r=\iint_S(\nabla\times\vec F) \cdot\vec n d\sigma=\iint_S\vec{0} \cdot\vec n d\sigma=0.

Summary