ubuntu2404
\relax
\providecommand\hyper@newdestlabel[2]{}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\abx@aux@refcontext{nty/global//global/global/global}
\abx@aux@cite{0}{boyd2004convex}
\abx@aux@segm{0}{0}{boyd2004convex}
\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction to Optimization and Control}{3}{section.1}\protected@file@percent }
\newlabel{sec:introduction}{{1}{3}{Introduction to Optimization and Control}{section.1}{}}
\newlabel{sec:introduction@cref}{{[section][1][]1}{[1][3][]3}{}{}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2}Mathematical Optimization Foundations}{3}{section.2}\protected@file@percent }
\newlabel{sec:optimization-foundations}{{2}{3}{Mathematical Optimization Foundations}{section.2}{}}
\newlabel{sec:optimization-foundations@cref}{{[section][2][]2}{[1][3][]3}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Convex Optimization Theory}{3}{subsection.2.1}\protected@file@percent }
\newlabel{subsec:convex-optimization}{{2.1}{3}{Convex Optimization Theory}{subsection.2.1}{}}
\newlabel{subsec:convex-optimization@cref}{{[subsection][1][2]2.1}{[1][3][]3}{}{}{}}
\abx@aux@cite{0}{nocedal2006numerical}
\abx@aux@segm{0}{0}{nocedal2006numerical}
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Convex optimization theory visualization. (Top) Two convex functions with unique global minima clearly marked. (Bottom left) Non-convex function showing multiple local minima. (Bottom right) Cross-sectional comparison highlighting the convex property where functions lie above their tangent lines.}}{4}{figure.caption.2}\protected@file@percent }
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{fig:convex-analysis}{{1}{4}{Convex optimization theory visualization. (Top) Two convex functions with unique global minima clearly marked. (Bottom left) Non-convex function showing multiple local minima. (Bottom right) Cross-sectional comparison highlighting the convex property where functions lie above their tangent lines}{figure.caption.2}{}}
\newlabel{fig:convex-analysis@cref}{{[figure][1][]1}{[1][3][]4}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Gradient-Based Optimization Algorithms}{4}{subsection.2.2}\protected@file@percent }
\newlabel{subsec:gradient-methods}{{2.2}{4}{Gradient-Based Optimization Algorithms}{subsection.2.2}{}}
\newlabel{subsec:gradient-methods@cref}{{[subsection][2][2]2.2}{[1][4][]4}{}{}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Gradient-based optimization algorithms analysis. (Top left) Optimization trajectories on the Rosenbrock function showing different path characteristics. (Top right) Function value convergence on logarithmic scale. (Bottom left) Gradient norm convergence indicating approach to optimality. (Bottom right) Algorithm performance comparison showing convergence rates and final values.}}{5}{figure.caption.3}\protected@file@percent }
\newlabel{fig:gradient-optimization}{{2}{5}{Gradient-based optimization algorithms analysis. (Top left) Optimization trajectories on the Rosenbrock function showing different path characteristics. (Top right) Function value convergence on logarithmic scale. (Bottom left) Gradient norm convergence indicating approach to optimality. (Bottom right) Algorithm performance comparison showing convergence rates and final values}{figure.caption.3}{}}
\newlabel{fig:gradient-optimization@cref}{{[figure][2][]2}{[1][4][]5}{}{}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3}Linear and Nonlinear Programming}{5}{section.3}\protected@file@percent }
\newlabel{sec:programming}{{3}{5}{Linear and Nonlinear Programming}{section.3}{}}
\newlabel{sec:programming@cref}{{[section][3][]3}{[1][5][]5}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Linear Programming and the Simplex Method}{5}{subsection.3.1}\protected@file@percent }
\newlabel{subsec:linear-programming}{{3.1}{5}{Linear Programming and the Simplex Method}{subsection.3.1}{}}
\newlabel{subsec:linear-programming@cref}{{[subsection][1][3]3.1}{[1][5][]5}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Constrained Optimization and KKT Conditions}{5}{subsection.3.2}\protected@file@percent }
\newlabel{subsec:constrained-optimization}{{3.2}{5}{Constrained Optimization and KKT Conditions}{subsection.3.2}{}}
\newlabel{subsec:constrained-optimization@cref}{{[subsection][2][3]3.2}{[1][5][]5}{}{}{}}
\abx@aux@cite{0}{anderson2007optimal}
\abx@aux@segm{0}{0}{anderson2007optimal}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Linear programming and constrained optimization analysis. (Top left) Linear programming feasible region with constraints, corner points, and optimal solution. (Top right) Constrained optimization problem showing objective function contours and constraint boundary. (Bottom left) Algorithm performance comparison showing convergence characteristics. (Bottom right) Optimization landscape visualization with 3D-like contour representation.}}{6}{figure.caption.4}\protected@file@percent }
\newlabel{fig:linear-constrained-optimization}{{3}{6}{Linear programming and constrained optimization analysis. (Top left) Linear programming feasible region with constraints, corner points, and optimal solution. (Top right) Constrained optimization problem showing objective function contours and constraint boundary. (Bottom left) Algorithm performance comparison showing convergence characteristics. (Bottom right) Optimization landscape visualization with 3D-like contour representation}{figure.caption.4}{}}
\newlabel{fig:linear-constrained-optimization@cref}{{[figure][3][]3}{[1][6][]6}{}{}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4}Optimal Control Theory}{6}{section.4}\protected@file@percent }
\newlabel{sec:optimal-control}{{4}{6}{Optimal Control Theory}{section.4}{}}
\newlabel{sec:optimal-control@cref}{{[section][4][]4}{[1][6][]6}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Linear Quadratic Regulator (LQR)}{6}{subsection.4.1}\protected@file@percent }
\newlabel{subsec:lqr}{{4.1}{6}{Linear Quadratic Regulator (LQR)}{subsection.4.1}{}}
\newlabel{subsec:lqr@cref}{{[subsection][1][4]4.1}{[1][6][]6}{}{}{}}
\abx@aux@cite{0}{kalman1960new}
\abx@aux@segm{0}{0}{kalman1960new}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Kalman Filtering and State Estimation}{7}{subsection.4.2}\protected@file@percent }
\newlabel{subsec:kalman-filter}{{4.2}{7}{Kalman Filtering and State Estimation}{subsection.4.2}{}}
\newlabel{subsec:kalman-filter@cref}{{[subsection][2][4]4.2}{[1][7][]7}{}{}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Optimal control theory and state estimation analysis. (Top left) LQR pole placement showing open-loop versus closed-loop pole locations and stability regions. (Top right) Step response comparison demonstrating improved performance with LQR control. (Bottom left) Kalman filter state estimation performance with uncertainty bounds. (Bottom right) LQR design trade-offs between control effort and settling time for different Q weight values.}}{7}{figure.caption.5}\protected@file@percent }
\newlabel{fig:control-systems-analysis}{{4}{7}{Optimal control theory and state estimation analysis. (Top left) LQR pole placement showing open-loop versus closed-loop pole locations and stability regions. (Top right) Step response comparison demonstrating improved performance with LQR control. (Bottom left) Kalman filter state estimation performance with uncertainty bounds. (Bottom right) LQR design trade-offs between control effort and settling time for different Q weight values}{figure.caption.5}{}}
\newlabel{fig:control-systems-analysis@cref}{{[figure][4][]4}{[1][7][]7}{}{}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5}Robust Control and Uncertainty}{8}{section.5}\protected@file@percent }
\newlabel{sec:robust-control}{{5}{8}{Robust Control and Uncertainty}{section.5}{}}
\newlabel{sec:robust-control@cref}{{[section][5][]5}{[1][7][]8}{}{}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6}Conclusion and Applications}{8}{section.6}\protected@file@percent }
\newlabel{sec:conclusion}{{6}{8}{Conclusion and Applications}{section.6}{}}
\newlabel{sec:conclusion@cref}{{[section][6][]6}{[1][8][]8}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Optimization Insights}{8}{subsection.6.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Control Theory Applications}{8}{subsection.6.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {6.3}Computational Considerations}{8}{subsection.6.3}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {A}Algorithm Summary}{9}{appendix.A}\protected@file@percent }
\newlabel{app:algorithms}{{A}{9}{Algorithm Summary}{appendix.A}{}}
\newlabel{app:algorithms@cref}{{[section][1][]A}{[1][9][]9}{}{}{}}
\abx@aux@read@bbl@mdfivesum{DDD7197CDEB904DFDAACCB5F5907EA25}
\abx@aux@defaultrefcontext{0}{anderson2007optimal}{nty/global//global/global/global}
\abx@aux@defaultrefcontext{0}{boyd2004convex}{nty/global//global/global/global}
\abx@aux@defaultrefcontext{0}{kalman1960new}{nty/global//global/global/global}
\abx@aux@defaultrefcontext{0}{nocedal2006numerical}{nty/global//global/global/global}
\gdef \@abspage@last{9}