Contact Us!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

| Download
Views: 37
Image: ubuntu2204
Kernel: Python 3 (system-wide)
import numpy as np import matplotlib.pyplot as plt import math as math def F(x): return x**2+3*x+1 x=np.linspace(-10,10) h=0.1 x_Tan=np.linspace(-10,10) for a in range(-10,10): d=(F(a+h)-F(a))/h Tangente= F(a)+d*(x_Tan-a) plt.plot(x_Tan, Tangente, color="#00BFBF") plt.plot(a, F(a), 'om') plt.plot(x,F(x), color="Red", label=f'Función f(x)=χ²+3χ+1') plt.axhline(0,color="Black") plt.axvline(0,color="Black") plt.xlabel('x') plt.ylabel('y') plt.title('Función f(x)=χ²+3χ+1') plt.savefig("output.png") plt.legend() plt.show()
Image in a Jupyter notebook
import numpy as np import sympy as sym import matplotlib.pyplot as plt from tkinter import * def calculate_polynomial(): x = sym.Symbol('x') f = sym.exp(-2*x) x0 = 0 grado = 6 n = grado + 1 k = 0 polinomio = 0 while (k < n): derivada = f.diff(x,k) derivadax0 = derivada.subs(x,x0) divisor = np.math.factorial(k) terminok = (derivadax0/divisor)*(x-x0)**k polinomio = polinomio + terminok k = k + 1 print(polinomio) return polinomio x = sym.symbols('x') f = sym.exp(-2*x) plt.axhline(0, color="black") plt.axvline(0, color="black") polynomial = calculate_polynomial() x_values = np.linspace(-10, 15, 50) polynomial_fn = sym.lambdify(x, polynomial, 'numpy') polynomial_values = polynomial_fn(x_values) plt.plot(x_values, polynomial_values, color='blue', label=f'polinomio en grado n=6') f_fn = sym.lambdify(x, f, 'numpy') f_values = f_fn(x_values) plt.plot(x_values, f_values, color='red', label=f'e^(-2x)') plt.xlim(-5,15) plt.ylim(-5,20) plt.xlabel('X') plt.ylabel('Y') plt.title('Polinomio de tylor para f(x)= e^(-2x)') plt.legend() plt.show()
4*x**6/45 - 4*x**5/15 + 2*x**4/3 - 4*x**3/3 + 2*x**2 - 2*x + 1
Image in a Jupyter notebook