Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
21 views
1
\documentclass[xcolor={dvipsnames}]{beamer}
2
3
\usetheme{Boadilla}
4
%\usecolortheme{seagull}
5
\usepackage[english]{babel}
6
\usepackage{pgf,pgfarrows,pgfnodes,pgfautomata,pgfheaps}
7
\usepackage{amsmath,amssymb}
8
\usepackage[latin1]{inputenc}
9
10
11
\setbeamercovered{invisible}
12
13
14
%This command gets rid of the navigation arrows that appear in the corner by default.
15
\usenavigationsymbolstemplate{}
16
17
18
19
20
% --------------------------------------------------------------
21
\begin{document}
22
% ----------------------------------------------------------------
23
\title[My Project]{Probability and Measure Theory}
24
\author[\tiny{Madeleine Lane Margot Kandarian}]{Madeleine Lane and Margot Kandarian\\ \scriptsize{\url{sites.google.com/site/probabilityandmeasuretheory}}}
25
\institute[USF]{University of San Francisco\\San Francisco, CA}
26
\date[\today ]{Presentation at USF Math 235}
27
28
\maketitle
29
30
% --FIRST SLIDE---------------------------------------------------
31
\begin{frame}\frametitle{Introduction}
32
33
\begin{block}{Definition.}
34
35
Probability is how \textit{likely} something is to happen. \pause
36
\end{block}
37
38
$$P(A)$$\pause
39
40
$A$ is a set that stands for an event and $P$ stands for the probability of that event occurring. \pause
41
42
43
\begin{block}{Definition.}
44
A measure $\mu$ on $\Omega$ with $\sigma$-algebra $A$ is a function $\mu : A \rightarrow [0, \infty]$. \pause
45
\end{block}
46
47
A measure is a generalization of the concepts of length, area, and volume.
48
49
\end{frame}
50
% ----------------------------------------------------------------
51
\begin{frame}\frametitle{Notation.}
52
53
\begin{itemize}
54
55
\item All of the possible outcomes of an experiment is denoted by the sample space, $\Omega$.
56
57
\item $\Omega$ is a sure event and $\emptyset$, the empty set, is an impossible event.
58
59
\item An event $A$ is a set of outcomes
60
61
\item $P(\Omega) = 1$ and $P(\emptyset)=0$
62
63
\item $P(A)$ is a nonnegative number and $0 \leq P(A) \leq 1$
64
65
\item A measurable space is written as $(\Omega, A)$
66
67
\item $A$ is a $\sigma$-algebra, meaning it is "measurable" on some space
68
69
\end{itemize}
70
71
\end{frame}
72
73
% --SECOND SLIDE--------------------------------------------------
74
\begin{frame}\frametitle{$\mathbb{Q}$ has a Lebesgue measure of 0.}
75
76
\begin{proof}
77
78
79
The rational numbers, $\mathbb{Q}$, are countably infinite, so we can say that $Q = \bigcup\limits_{i=1}^\infty {q_i}$. Then $\mu(Q)$ = $\sum\limits_{i=1}^\infty {\mu(q_i)}$. Since the measure of any set of cardinality 1 (each point, $q_i$, representing a rational number) has measure of 0, $$\sum\limits_{i=1}^\infty {\mu(q_i)} = \sum\limits_{i=1}^\infty 0 = 0$$. Therefore, the rational numbers have a Lebesgue measure of 0.
80
81
\end{proof}
82
83
\end{frame}
84
85
86
% --THIRD SLIDE--------------------------------------------------
87
88
\begin{frame}\frametitle{Why probability and measure theory?}
89
90
\begin{itemize}
91
92
\item A mathematical foundation for statistics \pause
93
94
\item Relevant to statistical mechanics and quantum computing \pause
95
96
\item Everyday life: predicting weather, coin tosses at sporting events \pause
97
98
\item Probability theory on its own fails when considering events with infinitely many outcomes \pause
99
100
\item In measure theory, it is possible to speak of the area, or measure, of a square cut up into infinite pieces and spread out over an infinite plane
101
102
103
104
\end{itemize}
105
106
\end{frame}
107
108
% --FOURTH SLIDE--------------------------------------------------
109
\begin{frame}\frametitle{A measure vs. a probability measure.}
110
111
A measure of a set $A$ is written as $$ m(A)=\sum_{n} m(A_{n}) $$ \pause
112
113
Now suppose we have a set of $n$ nonnegative numbers $\left\{p_{1}, p_{2},...,p_{n}\right\}$ so that $\sum\limits_{i=1}^n p_{i}=1$. \pause
114
115
\vspace{.5cm}
116
If the sample space is finite, meaning $\Omega = \left\{\omega_{1},...,\omega_{n}\right\}$, then there exists a unique probability distribution $P$ over events of $\Omega$ such that $P(\left\{\omega_{i}\right\}) = p_{i}$. If $E = \left\{\omega_{i}
117
: i \in I\right\}$ then the probability measure is written as
118
$$P(E) = \sum_{i\in I} P(\left\{\omega_{i}\right\}) = \sum_{i \in I} p_{i}.$$
119
120
121
\end{frame}
122
123
124
125
126
% --FIFTH SLIDE------------------------------------------
127
128
\begin{frame}{Example of a probability measure.}
129
130
$$P(E) = \sum_{i\in I} P(\left\{\omega_{i}\right\}) = \sum_{i \in I} p_{i}.$$ \pause
131
132
Suppose you throw two distinct dice where the sample space is $\Omega =\left\{(x,y):x,y\in \left\{1,2,...,6\right\}\right\}.$ The probability of the event
133
$E =\left\{(4, 4)\right\}$ is therefore $P(E) = \frac{1}{|\Omega|}= \frac{1}{36}.$ \pause \vspace{.5cm}
134
135
The probability of getting a sum of 9 in both dice is $$P(sum = 9) = P(\left\{(6,3),(3,6),(4,5),(5,4)\right\})$$ \center{which equals}
136
$$ \frac{|\left\{(6, 3),(3, 6),(4, 5),(5, 4)\right\}|}{36}=\frac{4}{36}.$$
137
\end{frame}
138
139
% --SIXTH SLIDE------------------------------------------
140
141
142
% --SEVENTH SLIDE------------------------------------------
143
144
\begin{frame}{THANK YOU!}
145
146
References
147
148
149
\begin{itemize}
150
151
\item http://mathworld.wolfram.com/Measure.html
152
153
\item "Probability Theory". \textit{Wikipedia}.
154
155
\item Lebanon, Guy. "Examples of Probability Measures".
156
157
\item http://austinrochford.com/posts/2013-12-31-almost-no-rationals.html
158
159
\end{itemize}
160
161
162
163
164
\end{frame}
165
166
167
168
\end{document}
169
170