Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl Extends the theory on functors, applicatives and monads. -/ universes u v w variables {α β γ : Type u} notation a ` $< `:1 f:1 := f a section functor variables {f : Type u → Type v} [functor f] [is_lawful_functor f] run_cmd mk_simp_attr `functor_norm run_cmd tactic.add_doc_string `simp_attr.functor_norm "Simp set for functor_norm" @[functor_norm] protected theorem map_map (m : α → β) (g : β → γ) (x : f α) : g <$> (m <$> x) = (g ∘ m) <$> x := (comp_map _ _ _).symm @[simp] theorem id_map' (x : f α) : (λa, a) <$> x = x := id_map _ end functor section applicative variables {F : Type u → Type v} [applicative F] def mzip_with {α₁ α₂ φ : Type u} (f : α₁ → α₂ → F φ) : Π (ma₁ : list α₁) (ma₂: list α₂), F (list φ) | (x :: xs) (y :: ys) := (::) <$> f x y <*> mzip_with xs ys | _ _ := pure [] def mzip_with' (f : α → β → F γ) : list α → list β → F punit | (x :: xs) (y :: ys) := f x y *> mzip_with' xs ys | [] _ := pure punit.star | _ [] := pure punit.star variables [is_lawful_applicative F] attribute [functor_norm] seq_assoc pure_seq_eq_map @[simp] theorem pure_id'_seq (x : F α) : pure (λx, x) <*> x = x := pure_id_seq x attribute [functor_norm] seq_assoc pure_seq_eq_map @[functor_norm] theorem seq_map_assoc (x : F (α → β)) (f : γ → α) (y : F γ) : (x <*> (f <$> y)) = (λ(m:α→β), m ∘ f) <$> x <*> y := begin simp [(pure_seq_eq_map _ _).symm], simp [seq_assoc, (comp_map _ _ _).symm, (∘)], simp [pure_seq_eq_map] end @[functor_norm] theorem map_seq (f : β → γ) (x : F (α → β)) (y : F α) : (f <$> (x <*> y)) = ((∘) f) <$> x <*> y := by simp [(pure_seq_eq_map _ _).symm]; simp [seq_assoc] end applicative -- TODO: setup `functor_norm` for `monad` laws attribute [functor_norm] pure_bind bind_assoc bind_pure section monad variables {m : Type u → Type v} [monad m] [is_lawful_monad m] open list def list.mpartition {f : Type → Type} [monad f] {α : Type} (p : α → f bool) : list α → f (list α × list α) | [] := pure ([],[]) | (x :: xs) := mcond (p x) (prod.map (cons x) id <$> list.mpartition xs) (prod.map id (cons x) <$> list.mpartition xs) lemma map_bind (x : m α) {g : α → m β} {f : β → γ} : f <$> (x >>= g) = (x >>= λa, f <$> g a) := by rw [← bind_pure_comp_eq_map,bind_assoc]; simp [bind_pure_comp_eq_map] lemma seq_bind_eq (x : m α) {g : β → m γ} {f : α → β} : (f <$> x) >>= g = (x >>= g ∘ f) := show bind (f <$> x) g = bind x (g ∘ f), by rw [← bind_pure_comp_eq_map, bind_assoc]; simp [pure_bind] lemma seq_eq_bind_map {x : m α} {f : m (α → β)} : f <*> x = (f >>= (<$> x)) := (bind_map_eq_seq m f x).symm /-- This is the Kleisli composition -/ @[reducible] def fish {m} [monad m] {α β γ} (f : α → m β) (g : β → m γ) := λ x, f x >>= g -- >=> is already defined in the core library but it is unusable -- because of its precedence (it is defined with precedence 2) and -- because it is defined as a lambda instead of having a named -- function infix ` >=> `:55 := fish @[functor_norm] lemma fish_pure {α β} (f : α → m β) : f >=> pure = f := by simp only [(>=>)] with functor_norm @[functor_norm] lemma fish_pipe {α β} (f : α → m β) : pure >=> f = f := by simp only [(>=>)] with functor_norm @[functor_norm] lemma fish_assoc {α β γ φ} (f : α → m β) (g : β → m γ) (h : γ → m φ) : (f >=> g) >=> h = f >=> (g >=> h) := by simp only [(>=>)] with functor_norm variables {β' γ' : Type v} variables {m' : Type v → Type w} [monad m'] def list.mmap_accumr (f : α → β' → m' (β' × γ')) : β' → list α → m' (β' × list γ') | a [] := pure (a,[]) | a (x :: xs) := do (a',ys) ← list.mmap_accumr a xs, (a'',y) ← f x a', pure (a'',y::ys) def list.mmap_accuml (f : β' → α → m' (β' × γ')) : β' → list α → m' (β' × list γ') | a [] := pure (a,[]) | a (x :: xs) := do (a',y) ← f a x, (a'',ys) ← list.mmap_accuml a' xs, pure (a'',y :: ys) end monad section variables {m : Type u → Type u} [monad m] [is_lawful_monad m] lemma mjoin_map_map {α β : Type u} (f : α → β) (a : m (m α)) : mjoin (functor.map f <$> a) = f <$> (mjoin a) := by simp only [mjoin, (∘), id.def, (bind_pure_comp_eq_map _ _ _).symm, bind_assoc, map_bind, pure_bind] lemma mjoin_map_mjoin {α : Type u} (a : m (m (m α))) : mjoin (mjoin <$> a) = mjoin (mjoin a) := by simp only [mjoin, (∘), id.def, map_bind, (bind_pure_comp_eq_map _ _ _).symm, bind_assoc, pure_bind] @[simp] lemma mjoin_map_pure {α : Type u} (a : m α) : mjoin (pure <$> a) = a := by simp only [mjoin, (∘), id.def, map_bind, (bind_pure_comp_eq_map _ _ _).symm, bind_assoc, pure_bind, bind_pure] @[simp] lemma mjoin_pure {α : Type u} (a : m α) : mjoin (pure a) = a := is_lawful_monad.pure_bind a id end section alternative variables {F : Type → Type v} [alternative F] def succeeds {α} (x : F α) : F bool := (x $> tt) <|> pure ff def mtry {α} (x : F α) : F unit := (x $> ()) <|> pure () @[simp] theorem guard_true {h : decidable true} : @guard F _ true h = pure () := by simp [guard] @[simp] theorem guard_false {h : decidable false} : @guard F _ false h = failure := by simp [guard] end alternative namespace sum variables {e : Type v} protected def bind {α β} : e ⊕ α → (α → e ⊕ β) → e ⊕ β | (inl x) _ := inl x | (inr x) f := f x instance : monad (sum.{v u} e) := { pure := @sum.inr e, bind := @sum.bind e } instance : is_lawful_functor (sum.{v u} e) := by refine { .. }; intros; casesm _ ⊕ _; refl instance : is_lawful_monad (sum.{v u} e) := { bind_assoc := by { intros, casesm _ ⊕ _; refl }, pure_bind := by { intros, refl }, bind_pure_comp_eq_map := by { intros, casesm _ ⊕ _; refl }, bind_map_eq_seq := by { intros, cases f; refl } } end sum section prio set_option default_priority 100 -- see Note [default priority] class is_comm_applicative (m : Type* → Type*) [applicative m] extends is_lawful_applicative m : Prop := (commutative_prod : ∀{α β} (a : m α) (b : m β), prod.mk <$> a <*> b = (λb a, (a, b)) <$> b <*> a) end prio lemma is_comm_applicative.commutative_map {m : Type* → Type*} [applicative m] [is_comm_applicative m] {α β γ} (a : m α) (b : m β) {f : α → β → γ} : f <$> a <*> b = flip f <$> b <*> a := calc f <$> a <*> b = (λp:α×β, f p.1 p.2) <$> (prod.mk <$> a <*> b) : by simp [seq_map_assoc, map_seq, seq_assoc, seq_pure, map_map] ... = (λb a, f a b) <$> b <*> a : by rw [is_comm_applicative.commutative_prod]; simp [seq_map_assoc, map_seq, seq_assoc, seq_pure, map_map]