Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
Extends the theory on functors, applicatives and monads.
-/
universes u v w
variables {α β γ : Type u}
notation a ` $< `:1 f:1 := f a
section functor
variables {f : Type u → Type v} [functor f] [is_lawful_functor f]
run_cmd mk_simp_attr `functor_norm
run_cmd tactic.add_doc_string `simp_attr.functor_norm "Simp set for functor_norm"
@[functor_norm] protected theorem map_map (m : α → β) (g : β → γ) (x : f α) :
g <$> (m <$> x) = (g ∘ m) <$> x :=
(comp_map _ _ _).symm
@[simp] theorem id_map' (x : f α) : (λa, a) <$> x = x := id_map _
end functor
section applicative
variables {F : Type u → Type v} [applicative F]
def mzip_with
{α₁ α₂ φ : Type u}
(f : α₁ → α₂ → F φ) :
Π (ma₁ : list α₁) (ma₂: list α₂), F (list φ)
| (x :: xs) (y :: ys) := (::) <$> f x y <*> mzip_with xs ys
| _ _ := pure []
def mzip_with' (f : α → β → F γ) : list α → list β → F punit
| (x :: xs) (y :: ys) := f x y *> mzip_with' xs ys
| [] _ := pure punit.star
| _ [] := pure punit.star
variables [is_lawful_applicative F]
attribute [functor_norm] seq_assoc pure_seq_eq_map
@[simp] theorem pure_id'_seq (x : F α) : pure (λx, x) <*> x = x :=
pure_id_seq x
attribute [functor_norm] seq_assoc pure_seq_eq_map
@[functor_norm] theorem seq_map_assoc (x : F (α → β)) (f : γ → α) (y : F γ) :
(x <*> (f <$> y)) = (λ(m:α→β), m ∘ f) <$> x <*> y :=
begin
simp [(pure_seq_eq_map _ _).symm],
simp [seq_assoc, (comp_map _ _ _).symm, (∘)],
simp [pure_seq_eq_map]
end
@[functor_norm] theorem map_seq (f : β → γ) (x : F (α → β)) (y : F α) :
(f <$> (x <*> y)) = ((∘) f) <$> x <*> y :=
by simp [(pure_seq_eq_map _ _).symm]; simp [seq_assoc]
end applicative
-- TODO: setup `functor_norm` for `monad` laws
attribute [functor_norm] pure_bind bind_assoc bind_pure
section monad
variables {m : Type u → Type v} [monad m] [is_lawful_monad m]
open list
def list.mpartition {f : Type → Type} [monad f] {α : Type} (p : α → f bool) :
list α → f (list α × list α)
| [] := pure ([],[])
| (x :: xs) :=
mcond (p x) (prod.map (cons x) id <$> list.mpartition xs)
(prod.map id (cons x) <$> list.mpartition xs)
lemma map_bind (x : m α) {g : α → m β} {f : β → γ} : f <$> (x >>= g) = (x >>= λa, f <$> g a) :=
by rw [← bind_pure_comp_eq_map,bind_assoc]; simp [bind_pure_comp_eq_map]
lemma seq_bind_eq (x : m α) {g : β → m γ} {f : α → β} : (f <$> x) >>= g = (x >>= g ∘ f) :=
show bind (f <$> x) g = bind x (g ∘ f),
by rw [← bind_pure_comp_eq_map, bind_assoc]; simp [pure_bind]
lemma seq_eq_bind_map {x : m α} {f : m (α → β)} : f <*> x = (f >>= (<$> x)) :=
(bind_map_eq_seq m f x).symm
/-- This is the Kleisli composition -/
@[reducible] def fish {m} [monad m] {α β γ} (f : α → m β) (g : β → m γ) := λ x, f x >>= g
-- >=> is already defined in the core library but it is unusable
-- because of its precedence (it is defined with precedence 2) and
-- because it is defined as a lambda instead of having a named
-- function
infix ` >=> `:55 := fish
@[functor_norm]
lemma fish_pure {α β} (f : α → m β) : f >=> pure = f :=
by simp only [(>=>)] with functor_norm
@[functor_norm]
lemma fish_pipe {α β} (f : α → m β) : pure >=> f = f :=
by simp only [(>=>)] with functor_norm
@[functor_norm]
lemma fish_assoc {α β γ φ} (f : α → m β) (g : β → m γ) (h : γ → m φ) :
(f >=> g) >=> h = f >=> (g >=> h) :=
by simp only [(>=>)] with functor_norm
variables {β' γ' : Type v}
variables {m' : Type v → Type w} [monad m']
def list.mmap_accumr (f : α → β' → m' (β' × γ')) : β' → list α → m' (β' × list γ')
| a [] := pure (a,[])
| a (x :: xs) :=
do (a',ys) ← list.mmap_accumr a xs,
(a'',y) ← f x a',
pure (a'',y::ys)
def list.mmap_accuml (f : β' → α → m' (β' × γ')) : β' → list α → m' (β' × list γ')
| a [] := pure (a,[])
| a (x :: xs) :=
do (a',y) ← f a x,
(a'',ys) ← list.mmap_accuml a' xs,
pure (a'',y :: ys)
end monad
section
variables {m : Type u → Type u} [monad m] [is_lawful_monad m]
lemma mjoin_map_map {α β : Type u} (f : α → β) (a : m (m α)) :
mjoin (functor.map f <$> a) = f <$> (mjoin a) :=
by simp only [mjoin, (∘), id.def,
(bind_pure_comp_eq_map _ _ _).symm, bind_assoc, map_bind, pure_bind]
lemma mjoin_map_mjoin {α : Type u} (a : m (m (m α))) :
mjoin (mjoin <$> a) = mjoin (mjoin a) :=
by simp only [mjoin, (∘), id.def,
map_bind, (bind_pure_comp_eq_map _ _ _).symm, bind_assoc, pure_bind]
@[simp] lemma mjoin_map_pure {α : Type u} (a : m α) :
mjoin (pure <$> a) = a :=
by simp only [mjoin, (∘), id.def,
map_bind, (bind_pure_comp_eq_map _ _ _).symm, bind_assoc, pure_bind, bind_pure]
@[simp] lemma mjoin_pure {α : Type u} (a : m α) : mjoin (pure a) = a :=
is_lawful_monad.pure_bind a id
end
section alternative
variables {F : Type → Type v} [alternative F]
def succeeds {α} (x : F α) : F bool := (x $> tt) <|> pure ff
def mtry {α} (x : F α) : F unit := (x $> ()) <|> pure ()
@[simp] theorem guard_true {h : decidable true} :
@guard F _ true h = pure () := by simp [guard]
@[simp] theorem guard_false {h : decidable false} :
@guard F _ false h = failure := by simp [guard]
end alternative
namespace sum
variables {e : Type v}
protected def bind {α β} : e ⊕ α → (α → e ⊕ β) → e ⊕ β
| (inl x) _ := inl x
| (inr x) f := f x
instance : monad (sum.{v u} e) :=
{ pure := @sum.inr e,
bind := @sum.bind e }
instance : is_lawful_functor (sum.{v u} e) :=
by refine { .. }; intros; casesm _ ⊕ _; refl
instance : is_lawful_monad (sum.{v u} e) :=
{ bind_assoc := by { intros, casesm _ ⊕ _; refl },
pure_bind := by { intros, refl },
bind_pure_comp_eq_map := by { intros, casesm _ ⊕ _; refl },
bind_map_eq_seq := by { intros, cases f; refl } }
end sum
section prio
set_option default_priority 100 -- see Note [default priority]
class is_comm_applicative (m : Type* → Type*) [applicative m] extends is_lawful_applicative m : Prop :=
(commutative_prod : ∀{α β} (a : m α) (b : m β), prod.mk <$> a <*> b = (λb a, (a, b)) <$> b <*> a)
end prio
lemma is_comm_applicative.commutative_map
{m : Type* → Type*} [applicative m] [is_comm_applicative m]
{α β γ} (a : m α) (b : m β) {f : α → β → γ} :
f <$> a <*> b = flip f <$> b <*> a :=
calc f <$> a <*> b = (λp:α×β, f p.1 p.2) <$> (prod.mk <$> a <*> b) :
by simp [seq_map_assoc, map_seq, seq_assoc, seq_pure, map_map]
... = (λb a, f a b) <$> b <*> a :
by rw [is_comm_applicative.commutative_prod];
simp [seq_map_assoc, map_seq, seq_assoc, seq_pure, map_map]