Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon Traversable instance for lazy_lists. -/ import category.traversable.equiv category.traversable.instances data.lazy_list universes u namespace thunk /-- Creates a thunk with a (non-lazy) constant value. -/ def mk {α} (x : α) : thunk α := λ _, x instance {α : Type u} [decidable_eq α] : decidable_eq (thunk α) | a b := have a = b ↔ a () = b (), from ⟨by cc, by intro; ext x; cases x; assumption⟩, by rw this; apply_instance end thunk namespace lazy_list open function def list_equiv_lazy_list (α : Type*) : list α ≃ lazy_list α := { to_fun := lazy_list.of_list, inv_fun := lazy_list.to_list, right_inv := by { intro, induction x, refl, simp! [*], ext, cases x, refl }, left_inv := by { intro, induction x, refl, simp! [*] } } instance {α : Type u} : inhabited (lazy_list α) := ⟨nil⟩ instance {α : Type u} [decidable_eq α] : decidable_eq (lazy_list α) | nil nil := is_true rfl | (cons x xs) (cons y ys) := if h : x = y then match decidable_eq (xs ()) (ys ()) with | is_false h2 := is_false (by intro; cc) | is_true h2 := have xs = ys, by ext u; cases u; assumption, is_true (by cc) end else is_false (by intro; cc) | nil (cons _ _) := is_false (by cc) | (cons _ _) nil := is_false (by cc) protected def traverse {m : Type u → Type u} [applicative m] {α β : Type u} (f : α → m β) : lazy_list α → m (lazy_list β) | lazy_list.nil := pure lazy_list.nil | (lazy_list.cons x xs) := lazy_list.cons <$> f x <*> (thunk.mk <$> traverse (xs ())) instance : traversable lazy_list := { map := @lazy_list.traverse id _, traverse := @lazy_list.traverse } instance : is_lawful_traversable lazy_list := begin apply equiv.is_lawful_traversable' list_equiv_lazy_list; intros ; resetI; ext, { induction x, refl, simp! [equiv.map,functor.map] at *, simp [*], refl, }, { induction x, refl, simp! [equiv.map,functor.map_const] at *, simp [*], refl, }, { induction x, { simp! [traversable.traverse,equiv.traverse] with functor_norm, refl }, simp! [equiv.map,functor.map_const,traversable.traverse] at *, rw x_ih, dsimp [list_equiv_lazy_list,equiv.traverse,to_list,traversable.traverse,list.traverse], simp! with functor_norm, refl }, end end lazy_list