Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon
Traversable instance for lazy_lists.
-/
import category.traversable.equiv category.traversable.instances data.lazy_list
universes u
namespace thunk
/-- Creates a thunk with a (non-lazy) constant value. -/
def mk {α} (x : α) : thunk α := λ _, x
instance {α : Type u} [decidable_eq α] : decidable_eq (thunk α) | a b :=
have a = b ↔ a () = b (), from ⟨by cc, by intro; ext x; cases x; assumption⟩,
by rw this; apply_instance
end thunk
namespace lazy_list
open function
def list_equiv_lazy_list (α : Type*) : list α ≃ lazy_list α :=
{ to_fun := lazy_list.of_list,
inv_fun := lazy_list.to_list,
right_inv := by { intro, induction x, refl, simp! [*],
ext, cases x, refl },
left_inv := by { intro, induction x, refl, simp! [*] } }
instance {α : Type u} : inhabited (lazy_list α) := ⟨nil⟩
instance {α : Type u} [decidable_eq α] : decidable_eq (lazy_list α)
| nil nil := is_true rfl
| (cons x xs) (cons y ys) :=
if h : x = y then
match decidable_eq (xs ()) (ys ()) with
| is_false h2 := is_false (by intro; cc)
| is_true h2 :=
have xs = ys, by ext u; cases u; assumption,
is_true (by cc)
end
else
is_false (by intro; cc)
| nil (cons _ _) := is_false (by cc)
| (cons _ _) nil := is_false (by cc)
protected def traverse {m : Type u → Type u} [applicative m] {α β : Type u}
(f : α → m β) : lazy_list α → m (lazy_list β)
| lazy_list.nil := pure lazy_list.nil
| (lazy_list.cons x xs) := lazy_list.cons <$> f x <*> (thunk.mk <$> traverse (xs ()))
instance : traversable lazy_list :=
{ map := @lazy_list.traverse id _,
traverse := @lazy_list.traverse }
instance : is_lawful_traversable lazy_list :=
begin
apply equiv.is_lawful_traversable' list_equiv_lazy_list;
intros ; resetI; ext,
{ induction x, refl,
simp! [equiv.map,functor.map] at *,
simp [*], refl, },
{ induction x, refl,
simp! [equiv.map,functor.map_const] at *,
simp [*], refl, },
{ induction x,
{ simp! [traversable.traverse,equiv.traverse] with functor_norm, refl },
simp! [equiv.map,functor.map_const,traversable.traverse] at *, rw x_ih,
dsimp [list_equiv_lazy_list,equiv.traverse,to_list,traversable.traverse,list.traverse],
simp! with functor_norm, refl },
end
end lazy_list