CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Kevin Kappelmann
-/
import data.rat.order
import data.rat.cast
import algebra.floor
/-!
# Floor Function for Rational Numbers

## Summary

We define the `floor` function and the `floor_ring` instance on `ℚ`.

## Tags

rat, rationals, ℚ, floor
-/

namespace rat

/-- `floor q` is the largest integer `z` such that `z ≤ q` -/
protected def floor : ℚ → ℤ
| ⟨n, d, h, c⟩ := n / d

protected theorem le_floor {z : ℤ} : ∀ {r : ℚ}, z ≤ rat.floor r ↔ (z : ℚ) ≤ r
| ⟨n, d, h, c⟩ := begin
  simp [rat.floor],
  rw [num_denom'],
  have h' := int.coe_nat_lt.2 h,
  conv { to_rhs,
    rw [coe_int_eq_mk, rat.le_def zero_lt_one h', mul_one] },
  exact int.le_div_iff_mul_le h'
end

instance : floor_ring ℚ :=
{ floor := rat.floor, le_floor := @rat.le_floor }

protected lemma floor_def {q : ℚ} : ⌊q⌋ = q.num / q.denom := by { cases q, refl }

end rat