Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Kevin Kappelmann
-/
import data.rat.order
import data.rat.cast
import algebra.floor
/-!
# Floor Function for Rational Numbers
## Summary
We define the `floor` function and the `floor_ring` instance on `ℚ`.
## Tags
rat, rationals, ℚ, floor
-/
namespace rat
/-- `floor q` is the largest integer `z` such that `z ≤ q` -/
protected def floor : ℚ → ℤ
| ⟨n, d, h, c⟩ := n / d
protected theorem le_floor {z : ℤ} : ∀ {r : ℚ}, z ≤ rat.floor r ↔ (z : ℚ) ≤ r
| ⟨n, d, h, c⟩ := begin
simp [rat.floor],
rw [num_denom'],
have h' := int.coe_nat_lt.2 h,
conv { to_rhs,
rw [coe_int_eq_mk, rat.le_def zero_lt_one h', mul_one] },
exact int.le_div_iff_mul_le h'
end
instance : floor_ring ℚ :=
{ floor := rat.floor, le_floor := @rat.le_floor }
protected lemma floor_def {q : ℚ} : ⌊q⌋ = q.num / q.denom := by { cases q, refl }
end rat