Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Michael Howes The functor Grp → Ab which is the left adjoint of the forgetful functor Ab → Grp. -/ import group_theory.quotient_group universes u v variables (α : Type u) [group α] def commutator : set α := group.normal_closure {x | ∃ p q, p * q * p⁻¹ * q⁻¹ = x} instance : normal_subgroup (commutator α) := group.normal_closure.is_normal def abelianization : Type u := quotient_group.quotient $ commutator α namespace abelianization local attribute [instance] quotient_group.left_rel normal_subgroup.to_is_subgroup instance : comm_group (abelianization α) := { mul_comm := λ x y, quotient.induction_on₂ x y $ λ a b, quotient.sound (group.subset_normal_closure ⟨b⁻¹,a⁻¹, by simp [mul_inv_rev, inv_inv, mul_assoc]⟩), .. quotient_group.group _} instance : inhabited (abelianization α) := ⟨1⟩ variable {α} def of (x : α) : abelianization α := quotient.mk x instance of.is_group_hom : is_group_hom (@of α _) := { map_mul := λ _ _, rfl } section lift variables {β : Type v} [comm_group β] (f : α → β) [is_group_hom f] lemma commutator_subset_ker : commutator α ⊆ is_group_hom.ker f := group.normal_closure_subset (λ x ⟨p,q,w⟩, (is_group_hom.mem_ker f).2 (by {rw ←w, simp [is_mul_hom.map_mul f, is_group_hom.map_inv f, mul_comm]})) def lift : abelianization α → β := quotient_group.lift _ f (λ x h, (is_group_hom.mem_ker f).1 (commutator_subset_ker f h)) instance lift.is_group_hom : is_group_hom (lift f) := quotient_group.is_group_hom_quotient_lift _ _ _ @[simp] lemma lift.of (x : α) : lift f (of x) = f x := rfl theorem lift.unique (g : abelianization α → β) [is_group_hom g] (hg : ∀ x, g (of x) = f x) {x} : g x = lift f x := quotient_group.induction_on x hg end lift end abelianization