Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Michael Howes
The functor Grp → Ab which is the left adjoint
of the forgetful functor Ab → Grp.
-/
import group_theory.quotient_group
universes u v
variables (α : Type u) [group α]
def commutator : set α :=
group.normal_closure {x | ∃ p q, p * q * p⁻¹ * q⁻¹ = x}
instance : normal_subgroup (commutator α) :=
group.normal_closure.is_normal
def abelianization : Type u :=
quotient_group.quotient $ commutator α
namespace abelianization
local attribute [instance] quotient_group.left_rel normal_subgroup.to_is_subgroup
instance : comm_group (abelianization α) :=
{ mul_comm := λ x y, quotient.induction_on₂ x y $ λ a b, quotient.sound
(group.subset_normal_closure ⟨b⁻¹,a⁻¹, by simp [mul_inv_rev, inv_inv, mul_assoc]⟩),
.. quotient_group.group _}
instance : inhabited (abelianization α) := ⟨1⟩
variable {α}
def of (x : α) : abelianization α :=
quotient.mk x
instance of.is_group_hom : is_group_hom (@of α _) :=
{ map_mul := λ _ _, rfl }
section lift
variables {β : Type v} [comm_group β] (f : α → β) [is_group_hom f]
lemma commutator_subset_ker : commutator α ⊆ is_group_hom.ker f :=
group.normal_closure_subset (λ x ⟨p,q,w⟩, (is_group_hom.mem_ker f).2
(by {rw ←w, simp [is_mul_hom.map_mul f, is_group_hom.map_inv f, mul_comm]}))
def lift : abelianization α → β :=
quotient_group.lift _ f (λ x h, (is_group_hom.mem_ker f).1 (commutator_subset_ker f h))
instance lift.is_group_hom : is_group_hom (lift f) :=
quotient_group.is_group_hom_quotient_lift _ _ _
@[simp] lemma lift.of (x : α) : lift f (of x) = f x :=
rfl
theorem lift.unique
(g : abelianization α → β) [is_group_hom g]
(hg : ∀ x, g (of x) = f x) {x} :
g x = lift f x :=
quotient_group.induction_on x hg
end lift
end abelianization