Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

31653 views
License: APACHE
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Michael Howes

The functor Grp → Ab which is the left adjoint
of the forgetful functor Ab → Grp.

-/

import group_theory.quotient_group

universes u v

variables (α : Type u) [group α]

def commutator : set α :=
group.normal_closure {x | ∃ p q, p * q * p⁻¹ * q⁻¹ = x}

instance : normal_subgroup (commutator α) :=
group.normal_closure.is_normal

def abelianization : Type u :=
quotient_group.quotient $ commutator α

namespace abelianization

local attribute [instance] quotient_group.left_rel normal_subgroup.to_is_subgroup

instance : comm_group (abelianization α) :=
{ mul_comm := λ x y, quotient.induction_on₂ x y $ λ a b, quotient.sound
    (group.subset_normal_closure ⟨b⁻¹,a⁻¹, by simp [mul_inv_rev, inv_inv, mul_assoc]⟩),
.. quotient_group.group _}

instance : inhabited (abelianization α) := ⟨1⟩

variable {α}

def of (x : α) : abelianization α :=
quotient.mk x

instance of.is_group_hom : is_group_hom (@of α _) :=
{ map_mul := λ _ _, rfl }

section lift

variables {β : Type v} [comm_group β] (f : α → β) [is_group_hom f]

lemma commutator_subset_ker : commutator α ⊆ is_group_hom.ker f  :=
group.normal_closure_subset (λ x ⟨p,q,w⟩, (is_group_hom.mem_ker f).2
  (by {rw ←w, simp [is_mul_hom.map_mul f, is_group_hom.map_inv f, mul_comm]}))

def lift : abelianization α → β :=
quotient_group.lift _ f (λ x h, (is_group_hom.mem_ker f).1 (commutator_subset_ker f h))

instance lift.is_group_hom : is_group_hom (lift f) :=
quotient_group.is_group_hom_quotient_lift _ _ _

@[simp] lemma lift.of (x : α) : lift f (of x) = f x :=
rfl

theorem lift.unique
  (g : abelianization α → β) [is_group_hom g]
  (hg : ∀ x, g (of x) = f x) {x} :
  g x = lift f x :=
quotient_group.induction_on x hg

end lift

end abelianization