Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon
-/
import tactic.core
import tactic.ext
import tactic.solve_by_elim
import data.set.basic data.stream.basic
@[ext] lemma unit.ext (x y : unit) : x = y :=
begin
cases x, cases y, refl
end
example : subsingleton unit :=
begin
split, intros, ext
end
example (x y : ℕ) : true :=
begin
have : x = y,
{ ext <|> admit },
have : x = y,
{ ext i <|> admit },
have : x = y,
{ ext : 1 <|> admit },
trivial
end
example (X Y : ℕ × ℕ) (h : X.1 = Y.1) (h : X.2 = Y.2) : X = Y :=
begin
ext; assumption
end
example (X Y : (ℕ → ℕ) × ℕ) (h : ∀ i, X.1 i = Y.1 i) (h : X.2 = Y.2) : X = Y :=
begin
ext x; solve_by_elim,
end
example (X Y : ℕ → ℕ × ℕ) (h : ∀ i, X i = Y i) : true :=
begin
have : X = Y,
{ ext i : 1,
guard_target X i = Y i,
admit },
have : X = Y,
{ ext i,
guard_target (X i).fst = (Y i).fst, admit,
guard_target (X i).snd = (Y i).snd, admit, },
have : X = Y,
{ ext : 1,
guard_target X x = Y x,
admit },
trivial,
end
example (s₀ s₁ : set ℕ) (h : s₁ = s₀) : s₀ = s₁ :=
by { ext1, guard_target x ∈ s₀ ↔ x ∈ s₁, simp * }
example (s₀ s₁ : stream ℕ) (h : s₁ = s₀) : s₀ = s₁ :=
by { ext1, guard_target s₀.nth n = s₁.nth n, simp * }
example (s₀ s₁ : ℤ → set (ℕ × ℕ))
(h : ∀ i a b, (a,b) ∈ s₀ i ↔ (a,b) ∈ s₁ i) : s₀ = s₁ :=
begin
ext i ⟨a,b⟩,
apply h
end
def my_foo {α} (x : semigroup α) (y : group α) : true := trivial
example {α : Type} : true :=
begin
have : true,
{ refine_struct (@my_foo α { .. } { .. } ),
-- 9 goals
guard_tags _field mul semigroup, admit,
-- case semigroup, mul
-- α : Type
-- ⊢ α → α → α
guard_tags _field mul_assoc semigroup, admit,
-- case semigroup, mul_assoc
-- α : Type
-- ⊢ ∀ (a b c : α), a * b * c = a * (b * c)
guard_tags _field mul group, admit,
-- case group, mul
-- α : Type
-- ⊢ α → α → α
guard_tags _field mul_assoc group, admit,
-- case group, mul_assoc
-- α : Type
-- ⊢ ∀ (a b c : α), a * b * c = a * (b * c)
guard_tags _field one group, admit,
-- case group, one
-- α : Type
-- ⊢ α
guard_tags _field one_mul group, admit,
-- case group, one_mul
-- α : Type
-- ⊢ ∀ (a : α), 1 * a = a
guard_tags _field mul_one group, admit,
-- case group, mul_one
-- α : Type
-- ⊢ ∀ (a : α), a * 1 = a
guard_tags _field inv group, admit,
-- case group, inv
-- α : Type
-- ⊢ α → α
guard_tags _field mul_left_inv group, admit,
-- case group, mul_left_inv
-- α : Type
-- ⊢ ∀ (a : α), a⁻¹ * a = 1
},
trivial
end
def my_bar {α} (x : semigroup α) (y : group α) (i j : α) : α := i
example {α : Type} : true :=
begin
have : monoid α,
{ refine_struct { mul := my_bar { .. } { .. } },
guard_tags _field mul semigroup, admit,
guard_tags _field mul_assoc semigroup, admit,
guard_tags _field mul group, admit,
guard_tags _field mul_assoc group, admit,
guard_tags _field one group, admit,
guard_tags _field one_mul group, admit,
guard_tags _field mul_one group, admit,
guard_tags _field inv group, admit,
guard_tags _field mul_left_inv group, admit,
guard_tags _field mul_assoc monoid, admit,
guard_tags _field one monoid, admit,
guard_tags _field one_mul monoid, admit,
guard_tags _field mul_one monoid, admit, },
trivial
end
structure dependent_fields :=
(a : bool)
(v : if a then ℕ else ℤ)
@[ext] lemma df.ext (s t : dependent_fields) (h : s.a = t.a)
(w : (@eq.rec _ s.a (λ b, if b then ℕ else ℤ) s.v t.a h) = t.v) : s = t :=
begin
cases s, cases t,
dsimp at *,
congr,
exact h,
subst h,
simp,
simp at w,
exact w,
end
example (s : dependent_fields) : s = s :=
begin
tactic.ext1 [] {tactic.apply_cfg . new_goals := tactic.new_goals.all},
guard_target s.a = s.a,
refl,
refl,
end
@[ext] structure dumb (V : Type) := (val : V)