Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon -/ import tactic.core import tactic.ext import tactic.solve_by_elim import data.set.basic data.stream.basic @[ext] lemma unit.ext (x y : unit) : x = y := begin cases x, cases y, refl end example : subsingleton unit := begin split, intros, ext end example (x y : ℕ) : true := begin have : x = y, { ext <|> admit }, have : x = y, { ext i <|> admit }, have : x = y, { ext : 1 <|> admit }, trivial end example (X Y : ℕ × ℕ) (h : X.1 = Y.1) (h : X.2 = Y.2) : X = Y := begin ext; assumption end example (X Y : (ℕ → ℕ) × ℕ) (h : ∀ i, X.1 i = Y.1 i) (h : X.2 = Y.2) : X = Y := begin ext x; solve_by_elim, end example (X Y : ℕ → ℕ × ℕ) (h : ∀ i, X i = Y i) : true := begin have : X = Y, { ext i : 1, guard_target X i = Y i, admit }, have : X = Y, { ext i, guard_target (X i).fst = (Y i).fst, admit, guard_target (X i).snd = (Y i).snd, admit, }, have : X = Y, { ext : 1, guard_target X x = Y x, admit }, trivial, end example (s₀ s₁ : set ℕ) (h : s₁ = s₀) : s₀ = s₁ := by { ext1, guard_target x ∈ s₀ ↔ x ∈ s₁, simp * } example (s₀ s₁ : stream ℕ) (h : s₁ = s₀) : s₀ = s₁ := by { ext1, guard_target s₀.nth n = s₁.nth n, simp * } example (s₀ s₁ : ℤ → set (ℕ × ℕ)) (h : ∀ i a b, (a,b) ∈ s₀ i ↔ (a,b) ∈ s₁ i) : s₀ = s₁ := begin ext i ⟨a,b⟩, apply h end def my_foo {α} (x : semigroup α) (y : group α) : true := trivial example {α : Type} : true := begin have : true, { refine_struct (@my_foo α { .. } { .. } ), -- 9 goals guard_tags _field mul semigroup, admit, -- case semigroup, mul -- α : Type -- ⊢ α → α → α guard_tags _field mul_assoc semigroup, admit, -- case semigroup, mul_assoc -- α : Type -- ⊢ ∀ (a b c : α), a * b * c = a * (b * c) guard_tags _field mul group, admit, -- case group, mul -- α : Type -- ⊢ α → α → α guard_tags _field mul_assoc group, admit, -- case group, mul_assoc -- α : Type -- ⊢ ∀ (a b c : α), a * b * c = a * (b * c) guard_tags _field one group, admit, -- case group, one -- α : Type -- ⊢ α guard_tags _field one_mul group, admit, -- case group, one_mul -- α : Type -- ⊢ ∀ (a : α), 1 * a = a guard_tags _field mul_one group, admit, -- case group, mul_one -- α : Type -- ⊢ ∀ (a : α), a * 1 = a guard_tags _field inv group, admit, -- case group, inv -- α : Type -- ⊢ α → α guard_tags _field mul_left_inv group, admit, -- case group, mul_left_inv -- α : Type -- ⊢ ∀ (a : α), a⁻¹ * a = 1 }, trivial end def my_bar {α} (x : semigroup α) (y : group α) (i j : α) : α := i example {α : Type} : true := begin have : monoid α, { refine_struct { mul := my_bar { .. } { .. } }, guard_tags _field mul semigroup, admit, guard_tags _field mul_assoc semigroup, admit, guard_tags _field mul group, admit, guard_tags _field mul_assoc group, admit, guard_tags _field one group, admit, guard_tags _field one_mul group, admit, guard_tags _field mul_one group, admit, guard_tags _field inv group, admit, guard_tags _field mul_left_inv group, admit, guard_tags _field mul_assoc monoid, admit, guard_tags _field one monoid, admit, guard_tags _field one_mul monoid, admit, guard_tags _field mul_one monoid, admit, }, trivial end structure dependent_fields := (a : bool) (v : if a then ℕ else ℤ) @[ext] lemma df.ext (s t : dependent_fields) (h : s.a = t.a) (w : (@eq.rec _ s.a (λ b, if b then ℕ else ℤ) s.v t.a h) = t.v) : s = t := begin cases s, cases t, dsimp at *, congr, exact h, subst h, simp, simp at w, exact w, end example (s : dependent_fields) : s = s := begin tactic.ext1 [] {tactic.apply_cfg . new_goals := tactic.new_goals.all}, guard_target s.a = s.a, refl, refl, end @[ext] structure dumb (V : Type) := (val : V)