Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2015 Nathaniel Thomas. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nathaniel Thomas, Jeremy Avigad, Johannes Hölzl, Mario Carneiro Modules over a ring. ## Implementation notes Throughout the `linear_map` section implicit `{}` brackets are often used instead of type class `[]` brackets. This is done when the instances can be inferred because they are implicit arguments to the type `linear_map`. When they can be inferred from the type it is faster to use this method than to use type class inference -/ import algebra.ring algebra.big_operators group_theory.subgroup group_theory.group_action open function universes u v w x variables {α : Type u} {β : Type v} {γ : Type w} {δ : Type x} -- /-- Typeclass for types with a scalar multiplication operation, denoted `•` (`\bu`) -/ -- class has_scalar (α : Type u) (γ : Type v) := (smul : α → γ → γ) -- infixr ` • `:73 := has_scalar.smul section prio set_option default_priority 100 -- see Note [default priority] /-- A semimodule is a generalization of vector spaces to a scalar semiring. It consists of a scalar semiring `α` and an additive monoid of "vectors" `β`, connected by a "scalar multiplication" operation `r • x : β` (where `r : α` and `x : β`) with some natural associativity and distributivity axioms similar to those on a ring. -/ class semimodule (α : Type u) (β : Type v) [semiring α] [add_comm_monoid β] extends distrib_mul_action α β := (add_smul : ∀(r s : α) (x : β), (r + s) • x = r • x + s • x) (zero_smul : ∀x : β, (0 : α) • x = 0) end prio section semimodule variables [R:semiring α] [add_comm_monoid β] [semimodule α β] (r s : α) (x y : β) include R theorem add_smul : (r + s) • x = r • x + s • x := semimodule.add_smul r s x variables (α) @[simp] theorem zero_smul : (0 : α) • x = 0 := semimodule.zero_smul α x variable {α} lemma semimodule.eq_zero_of_zero_eq_one (zero_eq_one : (0 : α) = 1) : x = 0 := by rw [←one_smul α x, ←zero_eq_one, zero_smul] instance smul.is_add_monoid_hom (x : β) : is_add_monoid_hom (λ r:α, r • x) := { map_zero := zero_smul _ x, map_add := λ r₁ r₂, add_smul r₁ r₂ x } lemma list.sum_smul {l : list α} {x : β} : l.sum • x = (l.map (λ r, r • x)).sum := show (λ r, r • x) l.sum = (l.map (λ r, r • x)).sum, from (list.sum_hom _ _).symm lemma multiset.sum_smul {l : multiset α} {x : β} : l.sum • x = (l.map (λ r, r • x)).sum := show (λ r, r • x) l.sum = (l.map (λ r, r • x)).sum, from (multiset.sum_hom _ _).symm lemma finset.sum_smul {f : γ → α} {s : finset γ} {x : β} : s.sum f • x = s.sum (λ r, (f r) • x) := show (λ r, r • x) (s.sum f) = s.sum (λ r, (f r) • x), from (finset.sum_hom _ _).symm end semimodule section prio set_option default_priority 100 -- see Note [default priority] /-- A module is a generalization of vector spaces to a scalar ring. It consists of a scalar ring `α` and an additive group of "vectors" `β`, connected by a "scalar multiplication" operation `r • x : β` (where `r : α` and `x : β`) with some natural associativity and distributivity axioms similar to those on a ring. -/ class module (α : Type u) (β : Type v) [ring α] [add_comm_group β] extends semimodule α β end prio structure module.core (α β) [ring α] [add_comm_group β] extends has_scalar α β := (smul_add : ∀(r : α) (x y : β), r • (x + y) = r • x + r • y) (add_smul : ∀(r s : α) (x : β), (r + s) • x = r • x + s • x) (mul_smul : ∀(r s : α) (x : β), (r * s) • x = r • s • x) (one_smul : ∀x : β, (1 : α) • x = x) def module.of_core {α β} [ring α] [add_comm_group β] (M : module.core α β) : module α β := by letI := M.to_has_scalar; exact { zero_smul := λ x, have (0 : α) • x + (0 : α) • x = (0 : α) • x + 0, by rw ← M.add_smul; simp, add_left_cancel this, smul_zero := λ r, have r • (0:β) + r • 0 = r • 0 + 0, by rw ← M.smul_add; simp, add_left_cancel this, ..M } section module variables [ring α] [add_comm_group β] [module α β] (r s : α) (x y : β) @[simp] theorem neg_smul : -r • x = - (r • x) := eq_neg_of_add_eq_zero (by rw [← add_smul, add_left_neg, zero_smul]) variables (α) theorem neg_one_smul (x : β) : (-1 : α) • x = -x := by simp variables {α} @[simp] theorem smul_neg : r • (-x) = -(r • x) := by rw [← neg_one_smul α, ← mul_smul, mul_neg_one, neg_smul] theorem smul_sub (r : α) (x y : β) : r • (x - y) = r • x - r • y := by simp [smul_add]; rw smul_neg theorem sub_smul (r s : α) (y : β) : (r - s) • y = r • y - s • y := by simp [add_smul] end module instance semiring.to_semimodule [r : semiring α] : semimodule α α := { smul := (*), smul_add := mul_add, add_smul := add_mul, mul_smul := mul_assoc, one_smul := one_mul, zero_smul := zero_mul, smul_zero := mul_zero, ..r } @[simp] lemma smul_eq_mul [semiring α] {a a' : α} : a • a' = a * a' := rfl instance ring.to_module [r : ring α] : module α α := { ..semiring.to_semimodule } def is_ring_hom.to_module [ring α] [ring β] (f : α → β) [h : is_ring_hom f] : module α β := module.of_core { smul := λ r x, f r * x, smul_add := λ r x y, by unfold has_scalar.smul; rw [mul_add], add_smul := λ r s x, by unfold has_scalar.smul; rw [h.map_add, add_mul], mul_smul := λ r s x, by unfold has_scalar.smul; rw [h.map_mul, mul_assoc], one_smul := λ x, show f 1 * x = _, by rw [h.map_one, one_mul] } class is_linear_map (α : Type u) {β : Type v} {γ : Type w} [ring α] [add_comm_group β] [add_comm_group γ] [module α β] [module α γ] (f : β → γ) : Prop := (add : ∀x y, f (x + y) = f x + f y) (smul : ∀(c : α) x, f (c • x) = c • f x) structure linear_map (α : Type u) (β : Type v) (γ : Type w) [ring α] [add_comm_group β] [add_comm_group γ] [module α β] [module α γ] := (to_fun : β → γ) (add : ∀x y, to_fun (x + y) = to_fun x + to_fun y) (smul : ∀(c : α) x, to_fun (c • x) = c • to_fun x) infixr ` →ₗ `:25 := linear_map _ notation β ` →ₗ[`:25 α:25 `] `:0 γ:0 := linear_map α β γ namespace linear_map variables {rα : ring α} {gβ : add_comm_group β} {gγ : add_comm_group γ} {gδ : add_comm_group δ} variables {mβ : module α β} {mγ : module α γ} {mδ : module α δ} variables (f g : β →ₗ[α] γ) include α mβ mγ instance : has_coe_to_fun (β →ₗ[α] γ) := ⟨_, to_fun⟩ @[simp] lemma coe_mk (f : β → γ) (h₁ h₂) : ((linear_map.mk f h₁ h₂ : β →ₗ[α] γ) : β → γ) = f := rfl theorem is_linear : is_linear_map α f := {..f} @[ext] theorem ext {f g : β →ₗ[α] γ} (H : ∀ x, f x = g x) : f = g := by cases f; cases g; congr'; exact funext H theorem ext_iff {f g : β →ₗ[α] γ} : f = g ↔ ∀ x, f x = g x := ⟨by rintro rfl; simp, ext⟩ @[simp] lemma map_add (x y : β) : f (x + y) = f x + f y := f.add x y @[simp] lemma map_smul (c : α) (x : β) : f (c • x) = c • f x := f.smul c x @[simp] lemma map_zero : f 0 = 0 := by rw [← zero_smul α, map_smul f 0 0, zero_smul] instance : is_add_group_hom f := { map_add := map_add f } @[simp] lemma map_neg (x : β) : f (- x) = - f x := by rw [← neg_one_smul α, map_smul, neg_one_smul] @[simp] lemma map_sub (x y : β) : f (x - y) = f x - f y := by simp [map_neg, map_add] @[simp] lemma map_sum {ι} {t : finset ι} {g : ι → β} : f (t.sum g) = t.sum (λi, f (g i)) := (t.sum_hom f).symm include mδ def comp (f : γ →ₗ[α] δ) (g : β →ₗ[α] γ) : β →ₗ[α] δ := ⟨f ∘ g, by simp, by simp⟩ @[simp] lemma comp_apply (f : γ →ₗ[α] δ) (g : β →ₗ[α] γ) (x : β) : f.comp g x = f (g x) := rfl omit mγ mδ variables [rα] [gβ] [mβ] def id : β →ₗ[α] β := ⟨id, by simp, by simp⟩ @[simp] lemma id_apply (x : β) : @id α β _ _ _ x = x := rfl end linear_map namespace is_linear_map variables [ring α] [add_comm_group β] [add_comm_group γ] variables [module α β] [module α γ] include α def mk' (f : β → γ) (H : is_linear_map α f) : β →ₗ γ := {to_fun := f, ..H} @[simp] theorem mk'_apply {f : β → γ} (H : is_linear_map α f) (x : β) : mk' f H x = f x := rfl lemma is_linear_map_neg : is_linear_map α (λ (z : β), -z) := is_linear_map.mk neg_add (λ x y, (smul_neg x y).symm) lemma is_linear_map_smul {α R : Type*} [add_comm_group α] [comm_ring R] [module R α] (c : R) : is_linear_map R (λ (z : α), c • z) := begin refine is_linear_map.mk (smul_add c) _, intros _ _, simp [smul_smul], ac_refl end --TODO: move lemma is_linear_map_smul' {α R : Type*} [add_comm_group α] [ring R] [module R α] (a : α) : is_linear_map R (λ (c : R), c • a) := begin refine is_linear_map.mk (λ x y, add_smul x y a) _, intros _ _, simp [smul_smul] end variables {f : β → γ} (lin : is_linear_map α f) include β γ lin @[simp] lemma map_zero : f (0 : β) = (0 : γ) := by rw [← zero_smul α (0 : β), lin.smul, zero_smul] @[simp] lemma map_add (x y : β) : f (x + y) = f x + f y := by rw [lin.add] @[simp] lemma map_neg (x : β) : f (- x) = - f x := by rw [← neg_one_smul α, lin.smul, neg_one_smul] @[simp] lemma map_sub (x y : β) : f (x - y) = f x - f y := by simp [lin.map_neg, lin.map_add] end is_linear_map abbreviation module.End (R : Type u) (M : Type v) [comm_ring R] [add_comm_group M] [module R M] := M →ₗ[R] M /-- A submodule of a module is one which is closed under vector operations. This is a sufficient condition for the subset of vectors in the submodule to themselves form a module. -/ structure submodule (α : Type u) (β : Type v) [ring α] [add_comm_group β] [module α β] : Type v := (carrier : set β) (zero : (0:β) ∈ carrier) (add : ∀ {x y}, x ∈ carrier → y ∈ carrier → x + y ∈ carrier) (smul : ∀ (c:α) {x}, x ∈ carrier → c • x ∈ carrier) namespace submodule variables [ring α] [add_comm_group β] [add_comm_group γ] variables [module α β] [module α γ] variables (p p' : submodule α β) variables {r : α} {x y : β} instance : has_coe (submodule α β) (set β) := ⟨submodule.carrier⟩ instance : has_mem β (submodule α β) := ⟨λ x p, x ∈ (p : set β)⟩ @[simp] theorem mem_coe : x ∈ (p : set β) ↔ x ∈ p := iff.rfl theorem ext' {s t : submodule α β} (h : (s : set β) = t) : s = t := by cases s; cases t; congr' protected theorem ext'_iff {s t : submodule α β} : (s : set β) = t ↔ s = t := ⟨ext', λ h, h ▸ rfl⟩ @[ext] theorem ext {s t : submodule α β} (h : ∀ x, x ∈ s ↔ x ∈ t) : s = t := ext' $ set.ext h @[simp] lemma zero_mem : (0 : β) ∈ p := p.zero lemma add_mem (h₁ : x ∈ p) (h₂ : y ∈ p) : x + y ∈ p := p.add h₁ h₂ lemma smul_mem (r : α) (h : x ∈ p) : r • x ∈ p := p.smul r h lemma neg_mem (hx : x ∈ p) : -x ∈ p := by rw ← neg_one_smul α; exact p.smul_mem _ hx lemma sub_mem (hx : x ∈ p) (hy : y ∈ p) : x - y ∈ p := p.add_mem hx (p.neg_mem hy) lemma neg_mem_iff : -x ∈ p ↔ x ∈ p := ⟨λ h, by simpa using neg_mem p h, neg_mem p⟩ lemma add_mem_iff_left (h₁ : y ∈ p) : x + y ∈ p ↔ x ∈ p := ⟨λ h₂, by simpa using sub_mem _ h₂ h₁, λ h₂, add_mem _ h₂ h₁⟩ lemma add_mem_iff_right (h₁ : x ∈ p) : x + y ∈ p ↔ y ∈ p := ⟨λ h₂, by simpa using sub_mem _ h₂ h₁, add_mem _ h₁⟩ lemma sum_mem {ι : Type w} [decidable_eq ι] {t : finset ι} {f : ι → β} : (∀c∈t, f c ∈ p) → t.sum f ∈ p := finset.induction_on t (by simp [p.zero_mem]) (by simp [p.add_mem] {contextual := tt}) instance : has_add p := ⟨λx y, ⟨x.1 + y.1, add_mem _ x.2 y.2⟩⟩ instance : has_zero p := ⟨⟨0, zero_mem _⟩⟩ instance : inhabited p := ⟨0⟩ instance : has_neg p := ⟨λx, ⟨-x.1, neg_mem _ x.2⟩⟩ instance : has_scalar α p := ⟨λ c x, ⟨c • x.1, smul_mem _ c x.2⟩⟩ @[simp, move_cast] lemma coe_add (x y : p) : (↑(x + y) : β) = ↑x + ↑y := rfl @[simp, elim_cast] lemma coe_zero : ((0 : p) : β) = 0 := rfl @[simp, move_cast] lemma coe_neg (x : p) : ((-x : p) : β) = -x := rfl @[simp, move_cast] lemma coe_smul (r : α) (x : p) : ((r • x : p) : β) = r • ↑x := rfl instance : add_comm_group p := by refine {add := (+), zero := 0, neg := has_neg.neg, ..}; { intros, apply set_coe.ext, simp } instance submodule_is_add_subgroup : is_add_subgroup (p : set β) := { zero_mem := p.zero, add_mem := p.add, neg_mem := λ _, p.neg_mem } @[move_cast] lemma coe_sub (x y : p) : (↑(x - y) : β) = ↑x - ↑y := by simp instance : module α p := by refine {smul := (•), ..}; { intros, apply set_coe.ext, simp [smul_add, add_smul, mul_smul] } protected def subtype : p →ₗ[α] β := by refine {to_fun := coe, ..}; simp [coe_smul] @[simp] theorem subtype_apply (x : p) : p.subtype x = x := rfl lemma subtype_eq_val (p : submodule α β) : ((submodule.subtype p) : p → β) = subtype.val := rfl end submodule @[reducible] def ideal (α : Type u) [comm_ring α] := submodule α α namespace ideal variables [comm_ring α] (I : ideal α) {a b : α} protected lemma zero_mem : (0 : α) ∈ I := I.zero_mem protected lemma add_mem : a ∈ I → b ∈ I → a + b ∈ I := I.add_mem lemma neg_mem_iff : -a ∈ I ↔ a ∈ I := I.neg_mem_iff lemma add_mem_iff_left : b ∈ I → (a + b ∈ I ↔ a ∈ I) := I.add_mem_iff_left lemma add_mem_iff_right : a ∈ I → (a + b ∈ I ↔ b ∈ I) := I.add_mem_iff_right protected lemma sub_mem : a ∈ I → b ∈ I → a - b ∈ I := I.sub_mem lemma mul_mem_left : b ∈ I → a * b ∈ I := I.smul_mem _ lemma mul_mem_right (h : a ∈ I) : a * b ∈ I := mul_comm b a ▸ I.mul_mem_left h end ideal library_note "vector space definition" "Vector spaces are defined as an `abbreviation` for modules, if the base ring is a field. (A previous definition made `vector_space` a structure defined to be `module`.) This has as advantage that vector spaces are completely transparant for type class inference, which means that all instances for modules are immediately picked up for vector spaces as well. A cosmetic disadvantage is that one can not extend vector spaces an sich, in definitions such as `normed_space`. The solution is to extend `module` instead." /-- A vector space is the same as a module, except the scalar ring is actually a field. (This adds commutativity of the multiplication and existence of inverses.) This is the traditional generalization of spaces like `ℝ^n`, which have a natural addition operation and a way to multiply them by real numbers, but no multiplication operation between vectors. -/ abbreviation vector_space (α : Type u) (β : Type v) [discrete_field α] [add_comm_group β] := module α β instance discrete_field.to_vector_space {α : Type*} [discrete_field α] : vector_space α α := { .. ring.to_module } /-- Subspace of a vector space. Defined to equal `submodule`. -/ @[reducible] def subspace (α : Type u) (β : Type v) [discrete_field α] [add_comm_group β] [vector_space α β] : Type v := submodule α β instance subspace.vector_space {α β} {f : discrete_field α} [add_comm_group β] [vector_space α β] (p : subspace α β) : vector_space α p := {..submodule.module p} namespace submodule variables {R:discrete_field α} [add_comm_group β] [add_comm_group γ] variables [vector_space α β] [vector_space α γ] variables (p p' : submodule α β) variables {r : α} {x y : β} include R set_option class.instance_max_depth 36 theorem smul_mem_iff (r0 : r ≠ 0) : r • x ∈ p ↔ x ∈ p := ⟨λ h, by simpa [smul_smul, inv_mul_cancel r0] using p.smul_mem (r⁻¹) h, p.smul_mem r⟩ end submodule namespace add_comm_monoid open add_monoid variables {M : Type*} [add_comm_monoid M] instance : semimodule ℕ M := { smul := smul, smul_add := λ _ _ _, smul_add _ _ _, add_smul := λ _ _ _, add_smul _ _ _, mul_smul := λ _ _ _, mul_smul _ _ _, one_smul := one_smul, zero_smul := zero_smul, smul_zero := smul_zero } end add_comm_monoid namespace add_comm_group variables {M : Type*} [add_comm_group M] instance : module ℤ M := { smul := gsmul, smul_add := λ _ _ _, gsmul_add _ _ _, add_smul := λ _ _ _, add_gsmul _ _ _, mul_smul := λ _ _ _, gsmul_mul _ _ _, one_smul := one_gsmul, zero_smul := zero_gsmul, smul_zero := gsmul_zero } end add_comm_group lemma gsmul_eq_smul {M : Type*} [add_comm_group M] (n : ℤ) (x : M) : gsmul n x = n • x := rfl def is_add_group_hom.to_linear_map [add_comm_group α] [add_comm_group β] (f : α → β) [is_add_group_hom f] : α →ₗ[ℤ] β := { to_fun := f, add := is_add_hom.map_add f, smul := λ i x, int.induction_on i (by rw [zero_smul, zero_smul, is_add_group_hom.map_zero f]) (λ i ih, by rw [add_smul, add_smul, is_add_hom.map_add f, ih, one_smul, one_smul]) (λ i ih, by rw [sub_smul, sub_smul, is_add_group_hom.map_sub f, ih, one_smul, one_smul]) } lemma module.smul_eq_smul {R : Type*} [ring R] {β : Type*} [add_comm_group β] [module R β] (n : ℕ) (b : β) : n • b = (n : R) • b := begin induction n with n ih, { rw [nat.cast_zero, zero_smul, zero_smul] }, { change (n + 1) • b = (n + 1 : R) • b, rw [add_smul, add_smul, one_smul, ih, one_smul] } end lemma nat.smul_def {M : Type*} [add_comm_monoid M] (n : ℕ) (x : M) : n • x = add_monoid.smul n x := rfl namespace finset lemma sum_const' {α : Type*} (R : Type*) [ring R] {β : Type*} [add_comm_group β] [module R β] {s : finset α} (b : β) : finset.sum s (λ (a : α), b) = (finset.card s : R) • b := by rw [finset.sum_const, ← module.smul_eq_smul]; refl variables {M : Type*} [decidable_linear_ordered_cancel_comm_monoid M] {s : finset α} (f : α → M) theorem exists_card_smul_le_sum (hs : s.nonempty) : ∃ i ∈ s, s.card • f i ≤ s.sum f := exists_le_of_sum_le hs $ by rw [sum_const, ← nat.smul_def, smul_sum] theorem exists_card_smul_ge_sum (hs : s.nonempty) : ∃ i ∈ s, s.sum f ≤ s.card • f i := exists_le_of_sum_le hs $ by rw [sum_const, ← nat.smul_def, smul_sum] end finset