Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Mario Carneiro
Additional equiv and encodable instances for lists, finsets, and fintypes.
-/
import data.equiv.denumerable data.nat.pairing order.order_iso
data.array.lemmas data.fintype
open nat list
namespace encodable
variables {α : Type*}
section list
variable [encodable α]
def encode_list : list α → ℕ
| [] := 0
| (a::l) := succ (mkpair (encode a) (encode_list l))
def decode_list : ℕ → option (list α)
| 0 := some []
| (succ v) := match unpair v, unpair_le_right v with
| (v₁, v₂), h :=
have v₂ < succ v, from lt_succ_of_le h,
(::) <$> decode α v₁ <*> decode_list v₂
end
instance list : encodable (list α) :=
⟨encode_list, decode_list, λ l,
by induction l with a l IH; simp [encode_list, decode_list, unpair_mkpair, encodek, *]⟩
@[simp] theorem encode_list_nil : encode (@nil α) = 0 := rfl
@[simp] theorem encode_list_cons (a : α) (l : list α) :
encode (a :: l) = succ (mkpair (encode a) (encode l)) := rfl
@[simp] theorem decode_list_zero : decode (list α) 0 = some [] := rfl
@[simp] theorem decode_list_succ (v : ℕ) :
decode (list α) (succ v) =
(::) <$> decode α v.unpair.1 <*> decode (list α) v.unpair.2 :=
show decode_list (succ v) = _, begin
cases e : unpair v with v₁ v₂,
simp [decode_list, e], refl
end
theorem length_le_encode : ∀ (l : list α), length l ≤ encode l
| [] := _root_.zero_le _
| (a :: l) := succ_le_succ $
le_trans (length_le_encode l) (le_mkpair_right _ _)
end list
section finset
variables [encodable α]
private def enle : α → α → Prop := encode ⁻¹'o (≤)
private lemma enle.is_linear_order : is_linear_order α enle :=
(order_embedding.preimage ⟨encode, encode_injective⟩ (≤)).is_linear_order
private def decidable_enle (a b : α) : decidable (enle a b) :=
by unfold enle order.preimage; apply_instance
local attribute [instance] enle.is_linear_order decidable_enle
def encode_multiset (s : multiset α) : ℕ :=
encode (s.sort enle)
def decode_multiset (n : ℕ) : option (multiset α) :=
coe <$> decode (list α) n
instance multiset : encodable (multiset α) :=
⟨encode_multiset, decode_multiset,
λ s, by simp [encode_multiset, decode_multiset, encodek]⟩
end finset
def encodable_of_list [decidable_eq α] (l : list α) (H : ∀ x, x ∈ l) : encodable α :=
⟨λ a, index_of a l, l.nth, λ a, index_of_nth (H _)⟩
def trunc_encodable_of_fintype (α : Type*) [decidable_eq α] [fintype α] : trunc (encodable α) :=
@@quot.rec_on_subsingleton _
(λ s : multiset α, (∀ x:α, x ∈ s) → trunc (encodable α)) _
finset.univ.1
(λ l H, trunc.mk $ encodable_of_list l H)
finset.mem_univ
instance vector [encodable α] {n} : encodable (vector α n) :=
encodable.subtype
instance fin_arrow [encodable α] {n} : encodable (fin n → α) :=
of_equiv _ (equiv.vector_equiv_fin _ _).symm
instance fin_pi (n) (π : fin n → Type*) [∀i, encodable (π i)] : encodable (Πi, π i) :=
of_equiv _ (equiv.pi_equiv_subtype_sigma (fin n) π)
instance array [encodable α] {n} : encodable (array n α) :=
of_equiv _ (equiv.array_equiv_fin _ _)
instance finset [encodable α] : encodable (finset α) :=
by haveI := decidable_eq_of_encodable α; exact
of_equiv {s : multiset α // s.nodup}
⟨λ ⟨a, b⟩, ⟨a, b⟩, λ⟨a, b⟩, ⟨a, b⟩, λ ⟨a, b⟩, rfl, λ⟨a, b⟩, rfl⟩
def fintype_arrow (α : Type*) (β : Type*) [fintype α] [decidable_eq α] [encodable β] :
trunc (encodable (α → β)) :=
(fintype.equiv_fin α).map $
λf, encodable.of_equiv (fin (fintype.card α) → β) $
equiv.arrow_congr f (equiv.refl _)
def fintype_pi (α : Type*) (π : α → Type*) [fintype α] [decidable_eq α] [∀a, encodable (π a)] :
trunc (encodable (Πa, π a)) :=
(encodable.trunc_encodable_of_fintype α).bind $ λa,
(@fintype_arrow α (Σa, π a) _ _ (@encodable.sigma _ _ a _)).bind $ λf,
trunc.mk $ @encodable.of_equiv _ _ (@encodable.subtype _ _ f _) (equiv.pi_equiv_subtype_sigma α π)
/-- The elements of a `fintype` as a sorted list. -/
def sorted_univ (α) [fintype α] [encodable α] : list α :=
finset.univ.sort (encodable.encode' α ⁻¹'o (≤))
theorem mem_sorted_univ {α} [fintype α] [encodable α] (x : α) : x ∈ sorted_univ α :=
(finset.mem_sort _).2 (finset.mem_univ _)
theorem length_sorted_univ {α} [fintype α] [encodable α] : (sorted_univ α).length = fintype.card α :=
finset.length_sort _
theorem sorted_univ_nodup {α} [fintype α] [encodable α] : (sorted_univ α).nodup :=
finset.sort_nodup _ _
/-- An encodable `fintype` is equivalent a `fin`.-/
def fintype_equiv_fin {α} [fintype α] [encodable α] :
α ≃ fin (fintype.card α) :=
begin
haveI : decidable_eq α := encodable.decidable_eq_of_encodable _,
transitivity,
{ exact fintype.equiv_fin_of_forall_mem_list mem_sorted_univ (@sorted_univ_nodup α _ _) },
exact equiv.cast (congr_arg _ (@length_sorted_univ α _ _))
end
instance fintype_arrow_of_encodable {α β : Type*} [encodable α] [fintype α] [encodable β] :
encodable (α → β) :=
of_equiv (fin (fintype.card α) → β) $ equiv.arrow_congr fintype_equiv_fin (equiv.refl _)
end encodable
namespace denumerable
variables {α : Type*} {β : Type*} [denumerable α] [denumerable β]
open encodable
section list
theorem denumerable_list_aux : ∀ n : ℕ,
∃ a ∈ @decode_list α _ n, encode_list a = n
| 0 := ⟨_, rfl, rfl⟩
| (succ v) := begin
cases e : unpair v with v₁ v₂,
have h := unpair_le_right v,
rw e at h,
rcases have v₂ < succ v, from lt_succ_of_le h,
denumerable_list_aux v₂ with ⟨a, h₁, h₂⟩,
simp at h₁,
simp [decode_list, e, h₂, h₁, encode_list, mkpair_unpair' e]
end
instance denumerable_list : denumerable (list α) := ⟨denumerable_list_aux⟩
@[simp] theorem list_of_nat_zero : of_nat (list α) 0 = [] := rfl
@[simp] theorem list_of_nat_succ (v : ℕ) :
of_nat (list α) (succ v) =
of_nat α v.unpair.1 :: of_nat (list α) v.unpair.2 :=
of_nat_of_decode $ show decode_list (succ v) = _,
begin
cases e : unpair v with v₁ v₂,
simp [decode_list, e],
rw [show decode_list v₂ = decode (list α) v₂,
from rfl, decode_eq_of_nat]; refl
end
end list
section multiset
def lower : list ℕ → ℕ → list ℕ
| [] n := []
| (m :: l) n := (m - n) :: lower l m
def raise : list ℕ → ℕ → list ℕ
| [] n := []
| (m :: l) n := (m + n) :: raise l (m + n)
lemma lower_raise : ∀ l n, lower (raise l n) n = l
| [] n := rfl
| (m :: l) n := by simp [raise, lower, nat.add_sub_cancel, lower_raise]
lemma raise_lower : ∀ {l n}, list.sorted (≤) (n :: l) → raise (lower l n) n = l
| [] n h := rfl
| (m :: l) n h :=
have n ≤ m, from list.rel_of_sorted_cons h _ (l.mem_cons_self _),
by simp [raise, lower, nat.add_sub_cancel' this,
raise_lower (list.sorted_of_sorted_cons h)]
lemma raise_chain : ∀ l n, list.chain (≤) n (raise l n)
| [] n := list.chain.nil
| (m :: l) n := list.chain.cons (nat.le_add_left _ _) (raise_chain _ _)
lemma raise_sorted : ∀ l n, list.sorted (≤) (raise l n)
| [] n := list.sorted_nil
| (m :: l) n := (list.chain_iff_pairwise (@le_trans _ _)).1 (raise_chain _ _)
/- Warning: this is not the same encoding as used in `encodable` -/
instance multiset : denumerable (multiset α) := mk' ⟨
λ s : multiset α, encode $ lower ((s.map encode).sort (≤)) 0,
λ n, multiset.map (of_nat α) (raise (of_nat (list ℕ) n) 0),
λ s, by have := raise_lower
(list.sorted_cons.2 ⟨λ n _, zero_le n, (s.map encode).sort_sorted _⟩);
simp [-multiset.coe_map, this],
λ n, by simp [-multiset.coe_map, list.merge_sort_eq_self _ (raise_sorted _ _), lower_raise]⟩
end multiset
section finset
def lower' : list ℕ → ℕ → list ℕ
| [] n := []
| (m :: l) n := (m - n) :: lower' l (m + 1)
def raise' : list ℕ → ℕ → list ℕ
| [] n := []
| (m :: l) n := (m + n) :: raise' l (m + n + 1)
lemma lower_raise' : ∀ l n, lower' (raise' l n) n = l
| [] n := rfl
| (m :: l) n := by simp [raise', lower', nat.add_sub_cancel, lower_raise']
lemma raise_lower' : ∀ {l n}, (∀ m ∈ l, n ≤ m) → list.sorted (<) l → raise' (lower' l n) n = l
| [] n h₁ h₂ := rfl
| (m :: l) n h₁ h₂ :=
have n ≤ m, from h₁ _ (l.mem_cons_self _),
by simp [raise', lower', nat.add_sub_cancel' this, raise_lower'
(list.rel_of_sorted_cons h₂ : ∀ a ∈ l, m < a) (list.sorted_of_sorted_cons h₂)]
lemma raise'_chain : ∀ l {m n}, m < n → list.chain (<) m (raise' l n)
| [] m n h := list.chain.nil
| (a :: l) m n h := list.chain.cons
(lt_of_lt_of_le h (nat.le_add_left _ _)) (raise'_chain _ (lt_succ_self _))
lemma raise'_sorted : ∀ l n, list.sorted (<) (raise' l n)
| [] n := list.sorted_nil
| (m :: l) n := (list.chain_iff_pairwise (@lt_trans _ _)).1
(raise'_chain _ (lt_succ_self _))
def raise'_finset (l : list ℕ) (n : ℕ) : finset ℕ :=
⟨raise' l n, (raise'_sorted _ _).imp (@ne_of_lt _ _)⟩
/- Warning: this is not the same encoding as used in `encodable` -/
instance finset : denumerable (finset α) := mk' ⟨
λ s : finset α, encode $ lower' ((s.map (eqv α).to_embedding).sort (≤)) 0,
λ n, finset.map (eqv α).symm.to_embedding (raise'_finset (of_nat (list ℕ) n) 0),
λ s, finset.eq_of_veq $ by simp [-multiset.coe_map, raise'_finset,
raise_lower' (λ n _, zero_le n) (finset.sort_sorted_lt _)],
λ n, by simp [-multiset.coe_map, finset.map, raise'_finset, finset.sort,
list.merge_sort_eq_self (≤) ((raise'_sorted _ _).imp (@le_of_lt _ _)),
lower_raise']⟩
end finset
end denumerable
namespace equiv
/-- The type lists on unit is canonically equivalent to the natural numbers. -/
def list_unit_equiv : list unit ≃ ℕ :=
{ to_fun := list.length,
inv_fun := list.repeat (),
left_inv := λ u, list.injective_length (by simp),
right_inv := λ n, list.length_repeat () n }
def list_nat_equiv_nat : list ℕ ≃ ℕ := denumerable.eqv _
def list_equiv_self_of_equiv_nat {α : Type} (e : α ≃ ℕ) : list α ≃ α :=
calc list α ≃ list ℕ : list_equiv_of_equiv e
... ≃ ℕ : list_nat_equiv_nat
... ≃ α : e.symm
end equiv