Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2017 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
Implementation of floating-point numbers (experimental).
-/
import data.rat data.semiquot
def int.shift2 (a b : ℕ) : ℤ → ℕ × ℕ
| (int.of_nat e) := (a.shiftl e, b)
| -[1+ e] := (a, b.shiftl e.succ)
namespace fp
@[derive inhabited]
inductive rmode
| NE -- round to nearest even
class float_cfg :=
(prec emax : ℕ)
(prec_pos : 0 < prec)
(prec_max : prec ≤ emax)
variable [C : float_cfg]
include C
def prec := C.prec
def emax := C.emax
def emin : ℤ := 1 - C.emax
def valid_finite (e : ℤ) (m : ℕ) : Prop :=
emin ≤ e + prec - 1 ∧ e + prec - 1 ≤ emax ∧ e = max (e + m.size - prec) emin
instance dec_valid_finite (e m) : decidable (valid_finite e m) :=
by unfold valid_finite; apply_instance
inductive float
| inf : bool → float
| nan : float
| finite : bool → Π e m, valid_finite e m → float
def float.is_finite : float → bool
| (float.finite s e m f) := tt
| _ := ff
def to_rat : Π (f : float), f.is_finite → ℚ
| (float.finite s e m f) _ :=
let (n, d) := int.shift2 m 1 e,
r := rat.mk_nat n d in
if s then -r else r
theorem float.zero.valid : valid_finite emin 0 :=
⟨begin
rw add_sub_assoc,
apply le_add_of_nonneg_right,
apply sub_nonneg_of_le,
apply int.coe_nat_le_coe_nat_of_le,
exact C.prec_pos
end, by simpa [emin] using show (prec : ℤ) ≤ emax + float_cfg.emax,
from le_trans (int.coe_nat_le.2 C.prec_max) (le_add_of_nonneg_left (int.coe_zero_le _)),
by rw max_eq_right; simp⟩
def float.zero (s : bool) : float :=
float.finite s emin 0 float.zero.valid
instance : inhabited float := ⟨float.zero tt⟩
protected def float.sign' : float → semiquot bool
| (float.inf s) := pure s
| float.nan := ⊤
| (float.finite s e m f) := pure s
protected def float.sign : float → bool
| (float.inf s) := s
| float.nan := ff
| (float.finite s e m f) := s
protected def float.is_zero : float → bool
| (float.finite s e 0 f) := tt
| _ := ff
protected def float.neg : float → float
| (float.inf s) := float.inf (bnot s)
| float.nan := float.nan
| (float.finite s e m f) := float.finite (bnot s) e m f
def div_nat_lt_two_pow (n d : ℕ) : ℤ → bool
| (int.of_nat e) := n < d.shiftl e
| -[1+ e] := n.shiftl e.succ < d
-- TODO(Mario): Prove these and drop 'meta'
meta def of_pos_rat_dn (n : ℕ+) (d : ℕ+) : float × bool :=
begin
let e₁ : ℤ := n.1.size - d.1.size - prec,
cases h₁ : int.shift2 d.1 n.1 (e₁ + prec) with d₁ n₁,
let e₂ := if n₁ < d₁ then e₁ - 1 else e₁,
let e₃ := max e₂ emin,
cases h₂ : int.shift2 d.1 n.1 (e₃ + prec) with d₂ n₂,
let r := rat.mk_nat n₂ d₂,
let m := r.floor,
refine (float.finite ff e₃ (int.to_nat m) _, r.denom = 1),
{ exact undefined }
end
meta def next_up_pos (e m) (v : valid_finite e m) : float :=
let m' := m.succ in
if ss : m'.size = m.size then
float.finite ff e m' (by unfold valid_finite at *; rw ss; exact v)
else if h : e = emax then
float.inf ff
else
float.finite ff e.succ (nat.div2 m') undefined
meta def next_dn_pos (e m) (v : valid_finite e m) : float :=
match m with
| 0 := next_up_pos _ _ float.zero.valid
| nat.succ m' :=
if ss : m'.size = m.size then
float.finite ff e m' (by unfold valid_finite at *; rw ss; exact v)
else if h : e = emin then
float.finite ff emin m' undefined
else
float.finite ff e.pred (bit1 m') undefined
end
meta def next_up : float → float
| (float.finite ff e m f) := next_up_pos e m f
| (float.finite tt e m f) := float.neg $ next_dn_pos e m f
| f := f
meta def next_dn : float → float
| (float.finite ff e m f) := next_dn_pos e m f
| (float.finite tt e m f) := float.neg $ next_up_pos e m f
| f := f
meta def of_rat_up : ℚ → float
| ⟨0, _, _, _⟩ := float.zero ff
| ⟨nat.succ n, d, h, _⟩ :=
let (f, exact) := of_pos_rat_dn n.succ_pnat ⟨d, h⟩ in
if exact then f else next_up f
| ⟨-[1+n], d, h, _⟩ := float.neg (of_pos_rat_dn n.succ_pnat ⟨d, h⟩).1
meta def of_rat_dn (r : ℚ) : float :=
float.neg $ of_rat_up (-r)
meta def of_rat : rmode → ℚ → float
| rmode.NE r :=
let low := of_rat_dn r, high := of_rat_up r in
if hf : high.is_finite then
if r = to_rat _ hf then high else
if lf : low.is_finite then
if r - to_rat _ lf > to_rat _ hf - r then high else
if r - to_rat _ lf < to_rat _ hf - r then low else
match low, lf with float.finite s e m f, _ :=
if 2 ∣ m then low else high
end
else float.inf tt
else float.inf ff
namespace float
instance : has_neg float := ⟨float.neg⟩
meta def add (mode : rmode) : float → float → float
| nan _ := nan
| _ nan := nan
| (inf tt) (inf ff) := nan
| (inf ff) (inf tt) := nan
| (inf s₁) _ := inf s₁
| _ (inf s₂) := inf s₂
| (finite s₁ e₁ m₁ v₁) (finite s₂ e₂ m₂ v₂) :=
let f₁ := finite s₁ e₁ m₁ v₁, f₂ := finite s₂ e₂ m₂ v₂ in
of_rat mode (to_rat f₁ rfl + to_rat f₂ rfl)
meta instance : has_add float := ⟨float.add rmode.NE⟩
meta def sub (mode : rmode) (f1 f2 : float) : float :=
add mode f1 (-f2)
meta instance : has_sub float := ⟨float.sub rmode.NE⟩
meta def mul (mode : rmode) : float → float → float
| nan _ := nan
| _ nan := nan
| (inf s₁) f₂ := if f₂.is_zero then nan else inf (bxor s₁ f₂.sign)
| f₁ (inf s₂) := if f₁.is_zero then nan else inf (bxor f₁.sign s₂)
| (finite s₁ e₁ m₁ v₁) (finite s₂ e₂ m₂ v₂) :=
let f₁ := finite s₁ e₁ m₁ v₁, f₂ := finite s₂ e₂ m₂ v₂ in
of_rat mode (to_rat f₁ rfl * to_rat f₂ rfl)
meta def div (mode : rmode) : float → float → float
| nan _ := nan
| _ nan := nan
| (inf s₁) (inf s₂) := nan
| (inf s₁) f₂ := inf (bxor s₁ f₂.sign)
| f₁ (inf s₂) := zero (bxor f₁.sign s₂)
| (finite s₁ e₁ m₁ v₁) (finite s₂ e₂ m₂ v₂) :=
let f₁ := finite s₁ e₁ m₁ v₁, f₂ := finite s₂ e₂ m₂ v₂ in
if f₂.is_zero then inf (bxor s₁ s₂) else
of_rat mode (to_rat f₁ rfl / to_rat f₂ rfl)
end float
end fp