Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2018 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Robert Y. Lewis, Mario Carneiro -/ import data.int.modeq data.padics.padic_numbers ring_theory.ideals ring_theory.algebra /-! # p-adic integers This file defines the p-adic integers ℤ_p as the subtype of ℚ_p with norm ≤ 1. We show that ℤ_p is a complete nonarchimedean normed local ring. ## Important definitions * `padic_int` : the type of p-adic numbers ## Notation We introduce the notation ℤ_[p] for the p-adic integers. ## Implementation notes Much, but not all, of this file assumes that `p` is prime. This assumption is inferred automatically by taking (prime p) as a type class argument. Coercions into ℤ_p are set up to work with the `norm_cast` tactic. ## References * [F. Q. Gouêva, *p-adic numbers*][gouvea1997] * [R. Y. Lewis, *A formal proof of Hensel's lemma over the p-adic integers*][lewis2019] * <https://en.wikipedia.org/wiki/P-adic_number> ## Tags p-adic, p adic, padic, p-adic integer -/ open nat padic metric noncomputable theory open_locale classical /-- The p-adic integers ℤ_p are the p-adic numbers with norm ≤ 1. -/ def padic_int (p : ℕ) [p.prime] := {x : ℚ_[p] // ∥x∥ ≤ 1} notation `ℤ_[`p`]` := padic_int p namespace padic_int variables {p : ℕ} [nat.prime p] /-- Addition on ℤ_p is inherited from ℚ_p. -/ def add : ℤ_[p] → ℤ_[p] → ℤ_[p] | ⟨x, hx⟩ ⟨y, hy⟩ := ⟨x+y, le_trans (padic_norm_e.nonarchimedean _ _) (max_le_iff.2 ⟨hx,hy⟩)⟩ /-- Multiplication on ℤ_p is inherited from ℚ_p. -/ def mul : ℤ_[p] → ℤ_[p] → ℤ_[p] | ⟨x, hx⟩ ⟨y, hy⟩ := ⟨x*y, begin rw padic_norm_e.mul, apply mul_le_one; {assumption <|> apply norm_nonneg} end⟩ /-- Negation on ℤ_p is inherited from ℚ_p. -/ def neg : ℤ_[p] → ℤ_[p] | ⟨x, hx⟩ := ⟨-x, by simpa⟩ instance : ring ℤ_[p] := begin refine { add := add, mul := mul, neg := neg, zero := ⟨0, by simp [zero_le_one]⟩, one := ⟨1, by simp⟩, .. }; {repeat {rintro ⟨_, _⟩}, simp [mul_assoc, left_distrib, right_distrib, add, mul, neg]} end instance : inhabited ℤ_[p] := ⟨0⟩ lemma zero_def : ∀ x : ℤ_[p], x = 0 ↔ x.val = 0 | ⟨x, _⟩ := ⟨subtype.mk.inj, λ h, by simp at h; simp only [h]; refl⟩ @[simp] lemma add_def : ∀ (x y : ℤ_[p]), (x+y).val = x.val + y.val | ⟨x, hx⟩ ⟨y, hy⟩ := rfl @[simp] lemma mul_def : ∀ (x y : ℤ_[p]), (x*y).val = x.val * y.val | ⟨x, hx⟩ ⟨y, hy⟩ := rfl @[simp] lemma mk_zero {h} : (⟨0, h⟩ : ℤ_[p]) = (0 : ℤ_[p]) := rfl instance : has_coe ℤ_[p] ℚ_[p] := ⟨subtype.val⟩ @[simp] lemma val_eq_coe (z : ℤ_[p]) : z.val = ↑z := rfl @[simp, move_cast] lemma coe_add : ∀ (z1 z2 : ℤ_[p]), (↑(z1 + z2) : ℚ_[p]) = ↑z1 + ↑z2 | ⟨_, _⟩ ⟨_, _⟩ := rfl @[simp, move_cast] lemma coe_mul : ∀ (z1 z2 : ℤ_[p]), (↑(z1 * z2) : ℚ_[p]) = ↑z1 * ↑z2 | ⟨_, _⟩ ⟨_, _⟩ := rfl @[simp, move_cast] lemma coe_neg : ∀ (z1 : ℤ_[p]), (↑(-z1) : ℚ_[p]) = -↑z1 | ⟨_, _⟩ := rfl @[simp, move_cast] lemma coe_sub : ∀ (z1 z2 : ℤ_[p]), (↑(z1 - z2) : ℚ_[p]) = ↑z1 - ↑z2 | ⟨_, _⟩ ⟨_, _⟩ := rfl @[simp, squash_cast] lemma coe_one : (↑(1 : ℤ_[p]) : ℚ_[p]) = 1 := rfl @[simp, squash_cast] lemma coe_coe : ∀ n : ℕ, (↑(↑n : ℤ_[p]) : ℚ_[p]) = (↑n : ℚ_[p]) | 0 := rfl | (k+1) := by simp [coe_coe] @[simp, squash_cast] lemma coe_zero : (↑(0 : ℤ_[p]) : ℚ_[p]) = 0 := rfl @[simp, move_cast] lemma cast_pow (x : ℤ_[p]) : ∀ (n : ℕ), (↑(x^n) : ℚ_[p]) = (↑x : ℚ_[p])^n | 0 := by simp | (k+1) := by simp [monoid.pow, pow]; congr; apply cast_pow lemma mk_coe : ∀ (k : ℤ_[p]), (⟨↑k, k.2⟩ : ℤ_[p]) = k | ⟨_, _⟩ := rfl /-- The inverse of a p-adic integer with norm equal to 1 is also a p-adic integer. Otherwise, the inverse is defined to be 0. -/ def inv : ℤ_[p] → ℤ_[p] | ⟨k, _⟩ := if h : ∥k∥ = 1 then ⟨1/k, by simp [h]⟩ else 0 end padic_int section instances variables {p : ℕ} [nat.prime p] @[reducible] def padic_norm_z (z : ℤ_[p]) : ℝ := ∥z.val∥ instance : metric_space ℤ_[p] := subtype.metric_space instance : has_norm ℤ_[p] := ⟨padic_norm_z⟩ instance : normed_ring ℤ_[p] := { dist_eq := λ ⟨_, _⟩ ⟨_, _⟩, rfl, norm_mul := λ ⟨_, _⟩ ⟨_, _⟩, norm_mul_le _ _ } instance padic_norm_z.is_absolute_value : is_absolute_value (λ z : ℤ_[p], ∥z∥) := { abv_nonneg := norm_nonneg, abv_eq_zero := λ ⟨_, _⟩, by simp [norm_eq_zero, padic_int.zero_def], abv_add := λ ⟨_,_⟩ ⟨_, _⟩, norm_add_le _ _, abv_mul := λ _ _, by unfold norm; simp [padic_norm_z] } protected lemma padic_int.pmul_comm : ∀ z1 z2 : ℤ_[p], z1*z2 = z2*z1 | ⟨q1, h1⟩ ⟨q2, h2⟩ := show (⟨q1*q2, _⟩ : ℤ_[p]) = ⟨q2*q1, _⟩, by simp [mul_comm] instance : comm_ring ℤ_[p] := { mul_comm := padic_int.pmul_comm, ..padic_int.ring } protected lemma padic_int.zero_ne_one : (0 : ℤ_[p]) ≠ 1 := show (⟨(0 : ℚ_[p]), _⟩ : ℤ_[p]) ≠ ⟨(1 : ℚ_[p]), _⟩, from mt subtype.ext.1 zero_ne_one protected lemma padic_int.eq_zero_or_eq_zero_of_mul_eq_zero : ∀ (a b : ℤ_[p]), a * b = 0 → a = 0 ∨ b = 0 | ⟨a, ha⟩ ⟨b, hb⟩ := λ h : (⟨a * b, _⟩ : ℤ_[p]) = ⟨0, _⟩, have a * b = 0, from subtype.ext.1 h, (mul_eq_zero_iff_eq_zero_or_eq_zero.1 this).elim (λ h1, or.inl (by simp [h1]; refl)) (λ h2, or.inr (by simp [h2]; refl)) instance : integral_domain ℤ_[p] := { eq_zero_or_eq_zero_of_mul_eq_zero := padic_int.eq_zero_or_eq_zero_of_mul_eq_zero, zero_ne_one := padic_int.zero_ne_one, ..padic_int.comm_ring } end instances namespace padic_norm_z variables {p : ℕ} [nat.prime p] lemma le_one : ∀ z : ℤ_[p], ∥z∥ ≤ 1 | ⟨_, h⟩ := h @[simp] lemma one : ∥(1 : ℤ_[p])∥ = 1 := by simp [norm, padic_norm_z] @[simp] lemma mul (z1 z2 : ℤ_[p]) : ∥z1 * z2∥ = ∥z1∥ * ∥z2∥ := by unfold norm; simp [padic_norm_z] @[simp] lemma pow (z : ℤ_[p]) : ∀ n : ℕ, ∥z^n∥ = ∥z∥^n | 0 := by simp | (k+1) := show ∥z*z^k∥ = ∥z∥*∥z∥^k, by {rw mul, congr, apply pow} theorem nonarchimedean : ∀ (q r : ℤ_[p]), ∥q + r∥ ≤ max (∥q∥) (∥r∥) | ⟨_, _⟩ ⟨_, _⟩ := padic_norm_e.nonarchimedean _ _ theorem add_eq_max_of_ne : ∀ {q r : ℤ_[p]}, ∥q∥ ≠ ∥r∥ → ∥q+r∥ = max (∥q∥) (∥r∥) | ⟨_, _⟩ ⟨_, _⟩ := padic_norm_e.add_eq_max_of_ne @[simp] lemma norm_one : ∥(1 : ℤ_[p])∥ = 1 := normed_field.norm_one lemma eq_of_norm_add_lt_right {z1 z2 : ℤ_[p]} (h : ∥z1 + z2∥ < ∥z2∥) : ∥z1∥ = ∥z2∥ := by_contradiction $ λ hne, not_lt_of_ge (by rw padic_norm_z.add_eq_max_of_ne hne; apply le_max_right) h lemma eq_of_norm_add_lt_left {z1 z2 : ℤ_[p]} (h : ∥z1 + z2∥ < ∥z1∥) : ∥z1∥ = ∥z2∥ := by_contradiction $ λ hne, not_lt_of_ge (by rw padic_norm_z.add_eq_max_of_ne hne; apply le_max_left) h @[simp] lemma padic_norm_e_of_padic_int (z : ℤ_[p]) : ∥(↑z : ℚ_[p])∥ = ∥z∥ := by simp [norm, padic_norm_z] @[simp] lemma padic_norm_z_eq_padic_norm_e {q : ℚ_[p]} (hq : ∥q∥ ≤ 1) : @norm ℤ_[p] _ ⟨q, hq⟩ = ∥q∥ := rfl end padic_norm_z private lemma mul_lt_one {α} [decidable_linear_ordered_comm_ring α] {a b : α} (hbz : 0 < b) (ha : a < 1) (hb : b < 1) : a * b < 1 := suffices a*b < 1*1, by simpa, mul_lt_mul ha (le_of_lt hb) hbz zero_le_one private lemma mul_lt_one_of_le_of_lt {α} [decidable_linear_ordered_comm_ring α] {a b : α} (ha : a ≤ 1) (hbz : 0 ≤ b) (hb : b < 1) : a * b < 1 := if hb' : b = 0 then by simpa [hb'] using zero_lt_one else if ha' : a = 1 then by simpa [ha'] else mul_lt_one (lt_of_le_of_ne hbz (ne.symm hb')) (lt_of_le_of_ne ha ha') hb namespace padic_int variables {p : ℕ} [nat.prime p] local attribute [reducible] padic_int lemma mul_inv : ∀ {z : ℤ_[p]}, ∥z∥ = 1 → z * z.inv = 1 | ⟨k, _⟩ h := begin have hk : k ≠ 0, from λ h', @zero_ne_one ℚ_[p] _ (by simpa [h'] using h), unfold padic_int.inv, split_ifs, { change (⟨k * (1/k), _⟩ : ℤ_[p]) = 1, simp [hk], refl }, { apply subtype.ext.2, simp [mul_inv_cancel hk] } end lemma inv_mul {z : ℤ_[p]} (hz : ∥z∥ = 1) : z.inv * z = 1 := by rw [mul_comm, mul_inv hz] lemma is_unit_iff {z : ℤ_[p]} : is_unit z ↔ ∥z∥ = 1 := ⟨λ h, begin rcases is_unit_iff_dvd_one.1 h with ⟨w, eq⟩, refine le_antisymm (padic_norm_z.le_one _) _, have := mul_le_mul_of_nonneg_left (padic_norm_z.le_one w) (norm_nonneg z), rwa [mul_one, ← padic_norm_z.mul, ← eq, padic_norm_z.one] at this end, λ h, ⟨⟨z, z.inv, mul_inv h, inv_mul h⟩, rfl⟩⟩ lemma norm_lt_one_add {z1 z2 : ℤ_[p]} (hz1 : ∥z1∥ < 1) (hz2 : ∥z2∥ < 1) : ∥z1 + z2∥ < 1 := lt_of_le_of_lt (padic_norm_z.nonarchimedean _ _) (max_lt hz1 hz2) lemma norm_lt_one_mul {z1 z2 : ℤ_[p]} (hz2 : ∥z2∥ < 1) : ∥z1 * z2∥ < 1 := calc ∥z1 * z2∥ = ∥z1∥ * ∥z2∥ : by simp ... < 1 : mul_lt_one_of_le_of_lt (padic_norm_z.le_one _) (norm_nonneg _) hz2 @[simp] lemma mem_nonunits {z : ℤ_[p]} : z ∈ nonunits ℤ_[p] ↔ ∥z∥ < 1 := by rw lt_iff_le_and_ne; simp [padic_norm_z.le_one z, nonunits, is_unit_iff] instance : local_ring ℤ_[p] := local_of_nonunits_ideal zero_ne_one $ λ x y, by simp; exact norm_lt_one_add private def cau_seq_to_rat_cau_seq (f : cau_seq ℤ_[p] norm) : cau_seq ℚ_[p] (λ a, ∥a∥) := ⟨ λ n, f n, λ _ hε, by simpa [norm, padic_norm_z] using f.cauchy hε ⟩ instance complete : cau_seq.is_complete ℤ_[p] norm := ⟨ λ f, have hqn : ∥cau_seq.lim (cau_seq_to_rat_cau_seq f)∥ ≤ 1, from padic_norm_e_lim_le zero_lt_one (λ _, padic_norm_z.le_one _), ⟨ ⟨_, hqn⟩, λ ε, by simpa [norm, padic_norm_z] using cau_seq.equiv_lim (cau_seq_to_rat_cau_seq f) ε⟩⟩ instance is_ring_hom_coe : is_ring_hom (coe : ℤ_[p] → ℚ_[p]) := { map_one := rfl, map_mul := coe_mul, map_add := coe_add } instance : algebra ℤ_[p] ℚ_[p] := @algebra.of_ring_hom ℤ_[p] _ _ _ (coe) padic_int.is_ring_hom_coe end padic_int namespace padic_norm_z variables {p : ℕ} [nat.prime p] lemma padic_val_of_cong_pow_p {z1 z2 : ℤ} {n : ℕ} (hz : z1 ≡ z2 [ZMOD ↑(p^n)]) : ∥(z1 - z2 : ℚ_[p])∥ ≤ ↑(↑p ^ (-n : ℤ) : ℚ) := have hdvd : ↑(p^n) ∣ z2 - z1, from int.modeq.modeq_iff_dvd.1 hz, have (z2 - z1 : ℚ_[p]) = ↑(↑(z2 - z1) : ℚ), by norm_cast, begin rw [norm_sub_rev, this, padic_norm_e.eq_padic_norm], exact_mod_cast padic_norm.le_of_dvd p hdvd end end padic_norm_z