Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2019 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Chris Hughes
-/
import data.rat set_theory.cardinal
namespace rat
open denumerable
instance : infinite ℚ :=
infinite.of_injective (coe : ℕ → ℚ) nat.cast_injective
private def denumerable_aux : ℚ ≃ { x : ℤ × ℕ // 0 < x.2 ∧ x.1.nat_abs.coprime x.2 } :=
{ to_fun := λ x, ⟨⟨x.1, x.2⟩, x.3, x.4⟩,
inv_fun := λ x, ⟨x.1.1, x.1.2, x.2.1, x.2.2⟩,
left_inv := λ ⟨_, _, _, _⟩, rfl,
right_inv := λ ⟨⟨_, _⟩, _, _⟩, rfl }
instance : denumerable ℚ :=
begin
let T := { x : ℤ × ℕ // 0 < x.2 ∧ x.1.nat_abs.coprime x.2 },
letI : infinite T := infinite.of_injective _ denumerable_aux.injective,
letI : encodable T := encodable.subtype,
letI : denumerable T := of_encodable_of_infinite T,
exact denumerable.of_equiv T denumerable_aux
end
end rat
namespace cardinal
lemma mk_rat : cardinal.mk ℚ = omega :=
denumerable_iff.mp ⟨by apply_instance⟩
end cardinal