Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

30975 views
License: APACHE
oleanfile3.4.2, commit cbd2b6686ddb��S"�initdataratorderdataratcastalgebrafloor�@export_decloptionnonenonesomesomeexport_declboolffffttttexport_declhas_andthenandthenandthenexport_declhas_powpowpowexport_declhas_appendappendappendexport_decldecidableis_trueis_trueis_falseis_falseto_boolto_boolexport_declhas_purepurepureexport_declhas_bindbindbindexport_declhas_monad_lift_tmonad_lift!monad_liftexport_declmonad_functor_tmonad_map$monad_mapexport_declmonad_runrun'runexport_decllistmmap*mmapmmap'*mmap'mfilter*mfiltermfoldl*mfoldlexport_declnativenat_map3rb_mapmkexport_declname_mapnativerb_mapmkexport_declexpr_mapnativerb_mapmkexport_decltacticinteraction_monadfailedfailexport_decltactic_resultinteraction_monadresultexport_decltacticFtransparencyreducibleGreduciblesemireducibleGsemireducibleexport_decltacticmk_simp_attrLmk_simp_attrexport_declmonad_exceptthrowOthrowcatchOcatchexport_declmonad_except_adapteradapt_exceptTadapt_exceptexport_declmonad_state_adapteradapt_stateWadapt_stateexport_declmonad_readerreadZreadexport_declmonad_reader_adapteradapt_reader]adapt_readerexport_declis_lawful_functormap_const_eq`map_const_eqid_map`id_mapcomp_map`comp_mapexport_declis_lawful_applicativeseq_left_eqgseq_left_eqseq_right_eqgseq_right_eqpure_seq_eq_mapgpure_seq_eq_mapmap_puregmap_pureseq_puregseq_pureseq_assocgseq_assocexport_declis_lawful_monadbind_pure_comp_eq_maptbind_pure_comp_eq_mapbind_map_eq_seqtbind_map_eq_seqpure_bindtpure_bindbind_assoctbind_assocexport_decltraversabletraverse}traversedeclratfloor_mainaratint�ratcases_on�a_numa_denomnata_poshas_ltltnathas_lthas_zerozeronathas_zeroa_copnatcoprime�nat_absid_rhshas_divdivinthas_divcoecoe_to_liftcoe_baseinthas_coe�PInfo�VMR�VMC��intof_nat�div_maindecl�equations_eqn_1ndhceq��mk' 0����eqreflid_delta@�PInfo�ATTR_refl_lemma���EqnL�decl�floor:�PInfo�prt�VMR�VMC��doc�`floor q` is the largest integer `z` such that `z ≤ q`decl�equations_eqn_1����9�?0�equations_eqn_1�PInfo�ATTR����EqnL�decl�_sunfold7�PInfo�decl�le_floorzriffhas_leleinthas_leQ[rathas_le"%(intcast_coerathas_neg�has_zero�has_one�has_add����Z^`exr_numr_denomr_posr_cop�Z^Rex�?eqmpr�Z�0�id8��a���e_1�b���e_2�congr��Z�Zcongr_arg������Z ��chas_lea�e_29��e_3���\��������� ]��H�R0� ��G������ratmk /����eqrec?_a�Z^��. ex�;� ������num_denom' ���^has_mulmul�has_mul�/ ����&�������%eqtrans��e��has_oneone�has_one��%��_a�����e�@���9�coe_int_eq_mk����;�%�2�;�$�! �6monoidto_has_onesemiringto_monoidordered_semiringto_semiringlinear_ordered_semiringto_ordered_semiringlinear_ordered_ringto_linear_ordered_semiringlinear_ordered_comm_ringto_linear_ordered_ringdecidable_linear_ordered_comm_ringto_linear_ordered_comm_ring�decidable_linear_ordered_comm_ring�%��e�4�j�_a��e���8�@��;�lpropext�r�lratle_def��j /zero_lt_one�e�mpr	�has_lt./�coe_nat_lt���l�%�2�l�%�%��semigroupto_has_mul�to_semigroup�monoid �6�U��_a�^�!���!��j����l mul_one�� ���%�%��%intle_div_iff_mul_le� /���PInfo�prt�decl�floor_ringfloor_ring�linear_ordered_ringfloor_ringmk��Qratle_floor�PInfo�
%	prt�
VMR�
VMC�
%	�decl�
equations_eqn_18���
��G�����PInfo�%	ATTR����EqnL�SEqnL�
ATTRinstance���
class��
��decl�floor_defq9floor�����num.�denom���q_numq_denomq_posq_copH��?�PInfo�(prt�EndFile