Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Alexander Bentkamp
-/
import linear_algebra.basic linear_algebra.finsupp order.zorn
/-!
# Linear independence and bases
This file defines linear independence and bases in a module or vector space.
It is inspired by Isabelle/HOL's linear algebra, and hence indirectly by HOL Light.
## Main definitions
All definitions are given for families of vectors, i.e. `v : ι → M` where M is the module or
vectorspace and `ι : Type*` is an arbitrary indexing type.
* `linear_independent R v` states that the elements of the family `v` are linear independent
* `linear_independent.repr hv x` returns the linear combination representing `x : span R (range v)`
on the linear independent vectors `v`, given `hv : linear_independent R v`
(using classical choice). `linear_independent.repr hv` is provided as a linear map.
* `is_basis R v` states that the vector family `v` is a basis, i.e. it is linear independent and
spans the entire space
* `is_basis.repr hv x` is the basis version of `linear_independent.repr hv x`. It returns the
linear combination representing `x : M` on a basis `v` of `M` (using classical choice).
The argument `hv` must be a proof that `is_basis R v`. `is_basis.repr hv` is given as a linear
map as well.
* `is_basis.constr hv f` constructs a linear map `M₁ →ₗ[R] M₂` given the values `f : ι → M₂` at the
basis `v : ι → M₁`, given `hv : is_basis R v`.
## Main statements
* `is_basis.ext` states that two linear maps are equal if they coincide on a basis.
* `exists_is_basis` states that every vector space has a basis.
## Implementation notes
We use families instead of sets because it allows us to say that two identical vectors are linearly
dependent. For bases, this is useful as well because we can easily derive ordered bases by using an
ordered index type ι.
If you want to use sets, use the family `(λ x, x : s → M)` given a set `s : set M`. The lemmas
`linear_independent.to_subtype_range` and `linear_independent.of_subtype_range` connect those two
worlds.
## Tags
linearly dependent, linear dependence, linearly independent, linear independence, basis
-/
noncomputable theory
open function lattice set submodule
open_locale classical
variables {ι : Type*} {ι' : Type*} {R : Type*} {K : Type*}
{M : Type*} {M' : Type*} {V : Type*} {V' : Type*}
section module
variables {v : ι → M}
variables [ring R] [add_comm_group M] [add_comm_group M']
variables [module R M] [module R M']
variables {a b : R} {x y : M}
include R
variables (R) (v)
/-- Linearly independent family of vectors -/
def linear_independent : Prop := (finsupp.total ι M R v).ker = ⊥
variables {R} {v}
theorem linear_independent_iff : linear_independent R v ↔
∀l, finsupp.total ι M R v l = 0 → l = 0 :=
by simp [linear_independent, linear_map.ker_eq_bot']
theorem linear_independent_iff' : linear_independent R v ↔
∀ s : finset ι, ∀ g : ι → R, s.sum (λ i, g i • v i) = 0 → ∀ i ∈ s, g i = 0 :=
linear_independent_iff.trans
⟨λ hf s g hg i his, have h : _ := hf (s.sum $ λ i, finsupp.single i (g i)) $
by simpa only [linear_map.map_sum, finsupp.total_single] using hg, calc
g i = (finsupp.lapply i : (ι →₀ R) →ₗ[R] R) (finsupp.single i (g i)) :
by rw [finsupp.lapply_apply, finsupp.single_eq_same]
... = s.sum (λ j, (finsupp.lapply i : (ι →₀ R) →ₗ[R] R) (finsupp.single j (g j))) :
eq.symm $ finset.sum_eq_single i
(λ j hjs hji, by rw [finsupp.lapply_apply, finsupp.single_eq_of_ne hji])
(λ hnis, hnis.elim his)
... = s.sum (λ j, finsupp.single j (g j)) i : (finsupp.lapply i : (ι →₀ R) →ₗ[R] R).map_sum.symm
... = 0 : finsupp.ext_iff.1 h i,
λ hf l hl, finsupp.ext $ λ i, classical.by_contradiction $ λ hni, hni $ hf _ _ hl _ $
finsupp.mem_support_iff.2 hni⟩
lemma linear_independent_empty_type (h : ¬ nonempty ι) : linear_independent R v :=
begin
rw [linear_independent_iff],
intros,
ext i,
exact false.elim (not_nonempty_iff_imp_false.1 h i)
end
lemma ne_zero_of_linear_independent
{i : ι} (ne : 0 ≠ (1:R)) (hv : linear_independent R v) : v i ≠ 0 :=
λ h, ne $ eq.symm begin
suffices : (finsupp.single i 1 : ι →₀ R) i = 0, {simpa},
rw linear_independent_iff.1 hv (finsupp.single i 1),
{simp},
{simp [h]}
end
lemma linear_independent.comp
(h : linear_independent R v) (f : ι' → ι) (hf : injective f) : linear_independent R (v ∘ f) :=
begin
rw [linear_independent_iff, finsupp.total_comp],
intros l hl,
have h_map_domain : ∀ x, (finsupp.map_domain f l) (f x) = 0,
by rw linear_independent_iff.1 h (finsupp.map_domain f l) hl; simp,
ext,
convert h_map_domain a,
simp only [finsupp.map_domain_apply hf],
end
lemma linear_independent_of_zero_eq_one (zero_eq_one : (0 : R) = 1) : linear_independent R v :=
linear_independent_iff.2 (λ l hl, finsupp.eq_zero_of_zero_eq_one zero_eq_one _)
lemma linear_independent.unique (hv : linear_independent R v) {l₁ l₂ : ι →₀ R} :
finsupp.total ι M R v l₁ = finsupp.total ι M R v l₂ → l₁ = l₂ :=
by apply linear_map.ker_eq_bot.1 hv
lemma linear_independent.injective (zero_ne_one : (0 : R) ≠ 1) (hv : linear_independent R v) :
injective v :=
begin
intros i j hij,
let l : ι →₀ R := finsupp.single i (1 : R) - finsupp.single j 1,
have h_total : finsupp.total ι M R v l = 0,
{ rw finsupp.total_apply,
rw finsupp.sum_sub_index,
{ simp [finsupp.sum_single_index, hij] },
{ intros, apply sub_smul } },
have h_single_eq : finsupp.single i (1 : R) = finsupp.single j 1,
{ rw linear_independent_iff at hv,
simp [eq_add_of_sub_eq' (hv l h_total)] },
show i = j,
{ apply or.elim ((finsupp.single_eq_single_iff _ _ _ _).1 h_single_eq),
simp,
exact λ h, false.elim (zero_ne_one.symm h.1) }
end
lemma linear_independent_span (hs : linear_independent R v) :
@linear_independent ι R (span R (range v))
(λ i : ι, ⟨v i, subset_span (mem_range_self i)⟩) _ _ _ :=
begin
rw linear_independent_iff at *,
intros l hl,
apply hs l,
have := congr_arg (submodule.subtype (span R (range v))) hl,
convert this,
rw [finsupp.total_apply, finsupp.total_apply],
unfold finsupp.sum,
rw linear_map.map_sum (submodule.subtype (span R (range v))),
simp
end
section subtype
/- The following lemmas use the subtype defined by a set in M as the index set ι. -/
theorem linear_independent_comp_subtype {s : set ι} :
linear_independent R (v ∘ subtype.val : s → M) ↔
∀ l ∈ (finsupp.supported R R s), (finsupp.total ι M R v) l = 0 → l = 0 :=
begin
rw [linear_independent_iff, finsupp.total_comp],
simp only [linear_map.comp_apply],
split,
{ intros h l hl₁ hl₂,
have h_bij : bij_on subtype.val (subtype.val ⁻¹' l.support.to_set : set s) l.support.to_set,
{ apply bij_on.mk,
{ unfold maps_to },
{ apply set.inj_on_of_injective _ subtype.val_injective },
intros i hi,
rw mem_image,
use subtype.mk i (((finsupp.mem_supported _ _).1 hl₁ : ↑(l.support) ⊆ s) hi),
rw mem_preimage,
exact ⟨hi, rfl⟩ },
show l = 0,
{ apply finsupp.eq_zero_of_comap_domain_eq_zero (subtype.val : s → ι) _ h_bij,
apply h,
convert hl₂,
rw [finsupp.lmap_domain_apply, finsupp.map_domain_comap_domain],
apply subtype.val_injective,
rw subtype.range_val,
exact (finsupp.mem_supported _ _).1 hl₁ } },
{ intros h l hl,
have hl' : finsupp.total ι M R v (finsupp.emb_domain ⟨subtype.val, subtype.val_injective⟩ l) = 0,
{ rw finsupp.emb_domain_eq_map_domain ⟨subtype.val, subtype.val_injective⟩ l,
apply hl },
apply finsupp.emb_domain_inj.1,
rw [h (finsupp.emb_domain ⟨subtype.val, subtype.val_injective⟩ l) _ hl',
finsupp.emb_domain_zero],
rw [finsupp.mem_supported, finsupp.support_emb_domain],
intros x hx,
rw [finset.mem_coe, finset.mem_map] at hx,
rcases hx with ⟨i, x', hx'⟩,
rw ←hx',
simp }
end
theorem linear_independent_subtype {s : set M} :
linear_independent R (λ x, x : s → M) ↔
∀ l ∈ (finsupp.supported R R s), (finsupp.total M M R id) l = 0 → l = 0 :=
by apply @linear_independent_comp_subtype _ _ _ id
theorem linear_independent_comp_subtype_disjoint {s : set ι} :
linear_independent R (v ∘ subtype.val : s → M) ↔
disjoint (finsupp.supported R R s) (finsupp.total ι M R v).ker :=
by rw [linear_independent_comp_subtype, linear_map.disjoint_ker]
theorem linear_independent_subtype_disjoint {s : set M} :
linear_independent R (λ x, x : s → M) ↔
disjoint (finsupp.supported R R s) (finsupp.total M M R id).ker :=
by apply @linear_independent_comp_subtype_disjoint _ _ _ id
theorem linear_independent_iff_total_on {s : set M} :
linear_independent R (λ x, x : s → M) ↔ (finsupp.total_on M M R id s).ker = ⊥ :=
by rw [finsupp.total_on, linear_map.ker, linear_map.comap_cod_restrict, map_bot, comap_bot,
linear_map.ker_comp, linear_independent_subtype_disjoint, disjoint, ← map_comap_subtype,
map_le_iff_le_comap, comap_bot, ker_subtype, le_bot_iff]
lemma linear_independent.to_subtype_range
(hv : linear_independent R v) : linear_independent R (λ x, x : range v → M) :=
begin
by_cases zero_eq_one : (0 : R) = 1,
{ apply linear_independent_of_zero_eq_one zero_eq_one },
rw linear_independent_subtype,
intros l hl₁ hl₂,
have h_bij : bij_on v (v ⁻¹' finset.to_set (l.support)) (finset.to_set (l.support)),
{ apply bij_on.mk,
{ unfold maps_to },
{ apply set.inj_on_of_injective _ (linear_independent.injective zero_eq_one hv) },
intros x hx,
rcases mem_range.1 (((finsupp.mem_supported _ _).1 hl₁ : ↑(l.support) ⊆ range v) hx) with ⟨i, hi⟩,
rw mem_image,
use i,
rw [mem_preimage, hi],
exact ⟨hx, rfl⟩ },
apply finsupp.eq_zero_of_comap_domain_eq_zero v l,
apply linear_independent_iff.1 hv,
rw [finsupp.total_comap_domain, finset.sum_preimage v l.support h_bij (λ (x : M), l x • x)],
rw [finsupp.total_apply, finsupp.sum] at hl₂,
apply hl₂
end
lemma linear_independent.of_subtype_range (hv : injective v)
(h : linear_independent R (λ x, x : range v → M)) : linear_independent R v :=
begin
rw linear_independent_iff,
intros l hl,
apply finsupp.injective_map_domain hv,
apply linear_independent_subtype.1 h (l.map_domain v),
{ rw finsupp.mem_supported,
intros x hx,
have := finset.mem_coe.2 (finsupp.map_domain_support hx),
rw finset.coe_image at this,
apply set.image_subset_range _ _ this, },
{ rwa [finsupp.total_map_domain _ _ hv, left_id] }
end
lemma linear_independent.restrict_of_comp_subtype {s : set ι}
(hs : linear_independent R (v ∘ subtype.val : s → M)) :
linear_independent R (function.restrict v s) :=
begin
have h_restrict : restrict v s = v ∘ (λ x, x.val) := rfl,
rw [linear_independent_iff, h_restrict, finsupp.total_comp],
intros l hl,
have h_map_domain_subtype_eq_0 : l.map_domain subtype.val = 0,
{ rw linear_independent_comp_subtype at hs,
apply hs (finsupp.lmap_domain R R (λ x : subtype s, x.val) l) _ hl,
rw finsupp.mem_supported,
simp,
intros x hx,
have := finset.mem_coe.2 (finsupp.map_domain_support (finset.mem_coe.1 hx)),
rw finset.coe_image at this,
exact subtype.val_image_subset _ _ this },
apply @finsupp.injective_map_domain _ (subtype s) ι,
{ apply subtype.val_injective },
{ simpa },
end
lemma linear_independent_empty : linear_independent R (λ x, x : (∅ : set M) → M) :=
by simp [linear_independent_subtype_disjoint]
lemma linear_independent.mono {t s : set M} (h : t ⊆ s) :
linear_independent R (λ x, x : s → M) → linear_independent R (λ x, x : t → M) :=
begin
simp only [linear_independent_subtype_disjoint],
exact (disjoint_mono_left (finsupp.supported_mono h))
end
lemma linear_independent_union {s t : set M}
(hs : linear_independent R (λ x, x : s → M)) (ht : linear_independent R (λ x, x : t → M))
(hst : disjoint (span R s) (span R t)) :
linear_independent R (λ x, x : (s ∪ t) → M) :=
begin
rw [linear_independent_subtype_disjoint, disjoint_def, finsupp.supported_union],
intros l h₁ h₂, rw mem_sup at h₁,
rcases h₁ with ⟨ls, hls, lt, hlt, rfl⟩,
have h_ls_mem_t : finsupp.total M M R id ls ∈ span R t,
{ rw [← image_id t, finsupp.span_eq_map_total],
apply (add_mem_iff_left (map _ _) (mem_image_of_mem _ hlt)).1,
rw [← linear_map.map_add, linear_map.mem_ker.1 h₂],
apply zero_mem },
have h_lt_mem_s : finsupp.total M M R id lt ∈ span R s,
{ rw [← image_id s, finsupp.span_eq_map_total],
apply (add_mem_iff_left (map _ _) (mem_image_of_mem _ hls)).1,
rw [← linear_map.map_add, add_comm, linear_map.mem_ker.1 h₂],
apply zero_mem },
have h_ls_mem_s : (finsupp.total M M R id) ls ∈ span R s,
{ rw ← image_id s,
apply (finsupp.mem_span_iff_total _).2 ⟨ls, hls, rfl⟩ },
have h_lt_mem_t : (finsupp.total M M R id) lt ∈ span R t,
{ rw ← image_id t,
apply (finsupp.mem_span_iff_total _).2 ⟨lt, hlt, rfl⟩ },
have h_ls_0 : ls = 0 :=
disjoint_def.1 (linear_independent_subtype_disjoint.1 hs) _ hls
(linear_map.mem_ker.2 $ disjoint_def.1 hst (finsupp.total M M R id ls) h_ls_mem_s h_ls_mem_t),
have h_lt_0 : lt = 0 :=
disjoint_def.1 (linear_independent_subtype_disjoint.1 ht) _ hlt
(linear_map.mem_ker.2 $ disjoint_def.1 hst (finsupp.total M M R id lt) h_lt_mem_s h_lt_mem_t),
show ls + lt = 0,
by simp [h_ls_0, h_lt_0],
end
lemma linear_independent_of_finite (s : set M)
(H : ∀ t ⊆ s, finite t → linear_independent R (λ x, x : t → M)) :
linear_independent R (λ x, x : s → M) :=
linear_independent_subtype.2 $
λ l hl, linear_independent_subtype.1 (H _ hl (finset.finite_to_set _)) l (subset.refl _)
lemma linear_independent_Union_of_directed {η : Type*}
{s : η → set M} (hs : directed (⊆) s)
(h : ∀ i, linear_independent R (λ x, x : s i → M)) :
linear_independent R (λ x, x : (⋃ i, s i) → M) :=
begin
haveI := classical.dec (nonempty η),
by_cases hη : nonempty η,
{ refine linear_independent_of_finite (⋃ i, s i) (λ t ht ft, _),
rcases finite_subset_Union ft ht with ⟨I, fi, hI⟩,
rcases hs.finset_le hη fi.to_finset with ⟨i, hi⟩,
exact (h i).mono (subset.trans hI $ bUnion_subset $
λ j hj, hi j (finite.mem_to_finset.2 hj)) },
{ refine linear_independent_empty.mono _,
rintro _ ⟨_, ⟨i, _⟩, _⟩, exact hη ⟨i⟩ }
end
lemma linear_independent_sUnion_of_directed {s : set (set M)}
(hs : directed_on (⊆) s)
(h : ∀ a ∈ s, linear_independent R (λ x, x : (a : set M) → M)) :
linear_independent R (λ x, x : (⋃₀ s) → M) :=
by rw sUnion_eq_Union; exact
linear_independent_Union_of_directed
((directed_on_iff_directed _).1 hs) (by simpa using h)
lemma linear_independent_bUnion_of_directed {η} {s : set η} {t : η → set M}
(hs : directed_on (t ⁻¹'o (⊆)) s) (h : ∀a∈s, linear_independent R (λ x, x : t a → M)) :
linear_independent R (λ x, x : (⋃a∈s, t a) → M) :=
by rw bUnion_eq_Union; exact
linear_independent_Union_of_directed
((directed_comp _ _ _).2 $ (directed_on_iff_directed _).1 hs)
(by simpa using h)
lemma linear_independent_Union_finite_subtype {ι : Type*} {f : ι → set M}
(hl : ∀i, linear_independent R (λ x, x : f i → M))
(hd : ∀i, ∀t:set ι, finite t → i ∉ t → disjoint (span R (f i)) (⨆i∈t, span R (f i))) :
linear_independent R (λ x, x : (⋃i, f i) → M) :=
begin
rw [Union_eq_Union_finset f],
apply linear_independent_Union_of_directed,
apply directed_of_sup,
exact (assume t₁ t₂ ht, Union_subset_Union $ assume i, Union_subset_Union_const $ assume h, ht h),
assume t, rw [set.Union, ← finset.sup_eq_supr],
refine t.induction_on _ _,
{ rw finset.sup_empty,
apply linear_independent_empty_type (not_nonempty_iff_imp_false.2 _),
exact λ x, set.not_mem_empty x (subtype.mem x) },
{ rintros ⟨i⟩ s his ih,
rw [finset.sup_insert],
apply linear_independent_union,
{ apply hl },
{ apply ih },
rw [finset.sup_eq_supr],
refine disjoint_mono (le_refl _) _ (hd i _ _ his),
{ simp only [(span_Union _).symm],
refine span_mono (@supr_le_supr2 (set M) _ _ _ _ _ _),
rintros ⟨i⟩, exact ⟨i, le_refl _⟩ },
{ change finite (plift.up ⁻¹' s.to_set),
exact finite_preimage (inj_on_of_injective _ (assume i j, plift.up.inj))
s.finite_to_set } }
end
lemma linear_independent_Union_finite {η : Type*} {ιs : η → Type*}
{f : Π j : η, ιs j → M}
(hindep : ∀j, linear_independent R (f j))
(hd : ∀i, ∀t:set η, finite t → i ∉ t →
disjoint (span R (range (f i))) (⨆i∈t, span R (range (f i)))) :
linear_independent R (λ ji : Σ j, ιs j, f ji.1 ji.2) :=
begin
by_cases zero_eq_one : (0 : R) = 1,
{ apply linear_independent_of_zero_eq_one zero_eq_one },
apply linear_independent.of_subtype_range,
{ rintros ⟨x₁, x₂⟩ ⟨y₁, y₂⟩ hxy,
by_cases h_cases : x₁ = y₁,
subst h_cases,
{ apply sigma.eq,
rw linear_independent.injective zero_eq_one (hindep _) hxy,
refl },
{ have h0 : f x₁ x₂ = 0,
{ apply disjoint_def.1 (hd x₁ {y₁} (finite_singleton y₁)
(λ h, h_cases (eq_of_mem_singleton h))) (f x₁ x₂) (subset_span (mem_range_self _)),
rw supr_singleton,
simp only [] at hxy,
rw hxy,
exact (subset_span (mem_range_self y₂)) },
exact false.elim (ne_zero_of_linear_independent zero_eq_one (hindep x₁) h0) } },
rw range_sigma_eq_Union_range,
apply linear_independent_Union_finite_subtype (λ j, (hindep j).to_subtype_range) hd,
end
end subtype
section repr
variables (hv : linear_independent R v)
/-- Canonical isomorphism between linear combinations and the span of linearly independent vectors. -/
def linear_independent.total_equiv (hv : linear_independent R v) : (ι →₀ R) ≃ₗ[R] span R (range v) :=
begin
apply linear_equiv.of_bijective (linear_map.cod_restrict (span R (range v)) (finsupp.total ι M R v) _),
{ rw linear_map.ker_cod_restrict,
apply hv },
{ rw [linear_map.range, linear_map.map_cod_restrict, ← linear_map.range_le_iff_comap,
range_subtype, map_top],
rw finsupp.range_total,
apply le_refl (span R (range v)) },
{ intro l,
rw ← finsupp.range_total,
rw linear_map.mem_range,
apply mem_range_self l }
end
/-- Linear combination representing a vector in the span of linearly independent vectors.
Given a family of linearly independent vectors, we can represent any vector in their span as
a linear combination of these vectors. These are provided by this linear map.
It is simply one direction of `linear_independent.total_equiv` -/
def linear_independent.repr (hv : linear_independent R v) :
span R (range v) →ₗ[R] ι →₀ R := hv.total_equiv.symm
lemma linear_independent.total_repr (x) : finsupp.total ι M R v (hv.repr x) = x :=
subtype.coe_ext.1 (linear_equiv.apply_symm_apply hv.total_equiv x)
lemma linear_independent.total_comp_repr : (finsupp.total ι M R v).comp hv.repr = submodule.subtype _ :=
linear_map.ext $ hv.total_repr
lemma linear_independent.repr_ker : hv.repr.ker = ⊥ :=
by rw [linear_independent.repr, linear_equiv.ker]
lemma linear_independent.repr_range : hv.repr.range = ⊤ :=
by rw [linear_independent.repr, linear_equiv.range]
lemma linear_independent.repr_eq
{l : ι →₀ R} {x} (eq : finsupp.total ι M R v l = ↑x) :
hv.repr x = l :=
begin
have : ↑((linear_independent.total_equiv hv : (ι →₀ R) →ₗ[R] span R (range v)) l)
= finsupp.total ι M R v l := rfl,
have : (linear_independent.total_equiv hv : (ι →₀ R) →ₗ[R] span R (range v)) l = x,
{ rw eq at this,
exact subtype.coe_ext.2 this },
rw ←linear_equiv.symm_apply_apply hv.total_equiv l,
rw ←this,
refl,
end
lemma linear_independent.repr_eq_single (i) (x) (hx : ↑x = v i) :
hv.repr x = finsupp.single i 1 :=
begin
apply hv.repr_eq,
simp [finsupp.total_single, hx]
end
lemma linear_independent_iff_not_smul_mem_span :
linear_independent R v ↔ (∀ (i : ι) (a : R), a • (v i) ∈ span R (v '' (univ \ {i})) → a = 0) :=
⟨ λ hv i a ha, begin
rw [finsupp.span_eq_map_total, mem_map] at ha,
rcases ha with ⟨l, hl, e⟩,
rw sub_eq_zero.1 (linear_independent_iff.1 hv (l - finsupp.single i a) (by simp [e])) at hl,
by_contra hn,
exact (not_mem_of_mem_diff (hl $ by simp [hn])) (mem_singleton _),
end, λ H, linear_independent_iff.2 $ λ l hl, begin
ext i, simp,
by_contra hn,
refine hn (H i _ _),
refine (finsupp.mem_span_iff_total _).2 ⟨finsupp.single i (l i) - l, _, _⟩,
{ rw finsupp.mem_supported',
intros j hj,
have hij : j = i :=
classical.not_not.1
(λ hij : j ≠ i, hj ((mem_diff _).2 ⟨mem_univ _, λ h, hij (eq_of_mem_singleton h)⟩)),
simp [hij] },
{ simp [hl] }
end⟩
end repr
lemma surjective_of_linear_independent_of_span
(hv : linear_independent R v) (f : ι' ↪ ι)
(hss : range v ⊆ span R (range (v ∘ f))) (zero_ne_one : 0 ≠ (1 : R)):
surjective f :=
begin
intros i,
let repr : (span R (range (v ∘ f)) : Type*) → ι' →₀ R := (hv.comp f f.inj).repr,
let l := (repr ⟨v i, hss (mem_range_self i)⟩).map_domain f,
have h_total_l : finsupp.total ι M R v l = v i,
{ dsimp only [l],
rw finsupp.total_map_domain,
rw (hv.comp f f.inj).total_repr,
{ refl },
{ exact f.inj } },
have h_total_eq : (finsupp.total ι M R v) l = (finsupp.total ι M R v) (finsupp.single i 1),
by rw [h_total_l, finsupp.total_single, one_smul],
have l_eq : l = _ := linear_map.ker_eq_bot.1 hv h_total_eq,
dsimp only [l] at l_eq,
rw ←finsupp.emb_domain_eq_map_domain at l_eq,
rcases finsupp.single_of_emb_domain_single (repr ⟨v i, _⟩) f i (1 : R) zero_ne_one.symm l_eq with ⟨i', hi'⟩,
use i',
exact hi'.2
end
lemma eq_of_linear_independent_of_span_subtype {s t : set M} (zero_ne_one : (0 : R) ≠ 1)
(hs : linear_independent R (λ x, x : s → M)) (h : t ⊆ s) (hst : s ⊆ span R t) : s = t :=
begin
let f : t ↪ s := ⟨λ x, ⟨x.1, h x.2⟩, λ a b hab, subtype.val_injective (subtype.mk.inj hab)⟩,
have h_surj : surjective f,
{ apply surjective_of_linear_independent_of_span hs f _ zero_ne_one,
convert hst; simp [f, comp], },
show s = t,
{ apply subset.antisymm _ h,
intros x hx,
rcases h_surj ⟨x, hx⟩ with ⟨y, hy⟩,
convert y.mem,
rw ← subtype.mk.inj hy,
refl }
end
open linear_map
lemma linear_independent.image (hv : linear_independent R v) {f : M →ₗ M'}
(hf_inj : disjoint (span R (range v)) f.ker) : linear_independent R (f ∘ v) :=
begin
rw [disjoint, ← set.image_univ, finsupp.span_eq_map_total, map_inf_eq_map_inf_comap,
map_le_iff_le_comap, comap_bot, finsupp.supported_univ, top_inf_eq] at hf_inj,
unfold linear_independent at hv,
rw hv at hf_inj,
haveI : inhabited M := ⟨0⟩,
rw [linear_independent, finsupp.total_comp],
rw [@finsupp.lmap_domain_total _ _ R _ _ _ _ _ _ _ _ _ _ f, ker_comp, eq_bot_iff],
apply hf_inj,
exact λ _, rfl,
end
lemma linear_independent.image_subtype {s : set M} {f : M →ₗ M'} (hs : linear_independent R (λ x, x : s → M))
(hf_inj : disjoint (span R s) f.ker) : linear_independent R (λ x, x : f '' s → M') :=
begin
rw [disjoint, ← set.image_id s, finsupp.span_eq_map_total, map_inf_eq_map_inf_comap,
map_le_iff_le_comap, comap_bot] at hf_inj,
haveI : inhabited M := ⟨0⟩,
rw [linear_independent_subtype_disjoint, disjoint, ← finsupp.lmap_domain_supported _ _ f, map_inf_eq_map_inf_comap,
map_le_iff_le_comap, ← ker_comp],
rw [@finsupp.lmap_domain_total _ _ R _ _ _, ker_comp],
{ exact le_trans (le_inf inf_le_left hf_inj) (le_trans (linear_independent_subtype_disjoint.1 hs) bot_le) },
{ simp }
end
lemma linear_independent_inl_union_inr {s : set M} {t : set M'}
(hs : linear_independent R (λ x, x : s → M))
(ht : linear_independent R (λ x, x : t → M')) :
linear_independent R (λ x, x : inl R M M' '' s ∪ inr R M M' '' t → M × M') :=
begin
apply linear_independent_union,
exact (hs.image_subtype $ by simp),
exact (ht.image_subtype $ by simp),
rw [span_image, span_image];
simp [disjoint_iff, prod_inf_prod]
end
lemma linear_independent_inl_union_inr' {v : ι → M} {v' : ι' → M'}
(hv : linear_independent R v) (hv' : linear_independent R v') :
linear_independent R (sum.elim (inl R M M' ∘ v) (inr R M M' ∘ v')) :=
begin
by_cases zero_eq_one : (0 : R) = 1,
{ apply linear_independent_of_zero_eq_one zero_eq_one },
have inj_v : injective v := (linear_independent.injective zero_eq_one hv),
have inj_v' : injective v' := (linear_independent.injective zero_eq_one hv'),
apply linear_independent.of_subtype_range,
{ apply sum.elim_injective,
{ exact injective_comp prod.injective_inl inj_v },
{ exact injective_comp prod.injective_inr inj_v' },
{ intros, simp [ne_zero_of_linear_independent zero_eq_one hv] } },
{ rw sum.elim_range,
apply linear_independent_union,
{ apply linear_independent.to_subtype_range,
apply linear_independent.image hv,
simp [ker_inl] },
{ apply linear_independent.to_subtype_range,
apply linear_independent.image hv',
simp [ker_inr] },
{ apply disjoint_mono _ _ disjoint_inl_inr,
{ rw [set.range_comp, span_image],
apply linear_map.map_le_range },
{ rw [set.range_comp, span_image],
apply linear_map.map_le_range } } }
end
/-- Dedekind's linear independence of characters -/
-- See, for example, Keith Conrad's note <https://kconrad.math.uconn.edu/blurbs/galoistheory/linearchar.pdf>
theorem linear_independent_monoid_hom (G : Type*) [monoid G] (L : Type*) [integral_domain L] :
@linear_independent _ L (G → L) (λ f, f : (G →* L) → (G → L)) _ _ _ :=
by letI := classical.dec_eq (G →* L);
letI : mul_action L L := distrib_mul_action.to_mul_action L L;
-- We prove linear independence by showing that only the trivial linear combination vanishes.
exact linear_independent_iff'.2
-- To do this, we use `finset` induction,
(λ s, finset.induction_on s (λ g hg i, false.elim) $ λ a s has ih g hg,
-- Here
-- * `a` is a new character we will insert into the `finset` of characters `s`,
-- * `ih` is the fact that only the trivial linear combination of characters in `s` is zero
-- * `hg` is the fact that `g` are the coefficients of a linear combination summing to zero
-- and it remains to prove that `g` vanishes on `insert a s`.
-- We now make the key calculation:
-- For any character `i` in the original `finset`, we have `g i • i = g i • a` as functions on the monoid `G`.
have h1 : ∀ i ∈ s, (g i • i : G → L) = g i • a, from λ i his, funext $ λ x : G,
-- We prove these expressions are equal by showing
-- the differences of their values on each monoid element `x` is zero
eq_of_sub_eq_zero $ ih (λ j, g j * j x - g j * a x)
(funext $ λ y : G, calc
-- After that, it's just a chase scene.
s.sum (λ i, ((g i * i x - g i * a x) • i : G → L)) y
= s.sum (λ i, (g i * i x - g i * a x) * i y) : pi.finset_sum_apply _ _ _
... = s.sum (λ i, g i * i x * i y - g i * a x * i y) : finset.sum_congr rfl
(λ _ _, sub_mul _ _ _)
... = s.sum (λ i, g i * i x * i y) - s.sum (λ i, g i * a x * i y) : finset.sum_sub_distrib
... = (g a * a x * a y + s.sum (λ i, g i * i x * i y))
- (g a * a x * a y + s.sum (λ i, g i * a x * i y)) : by rw add_sub_add_left_eq_sub
... = (insert a s).sum (λ i, g i * i x * i y) - (insert a s).sum (λ i, g i * a x * i y) :
by rw [finset.sum_insert has, finset.sum_insert has]
... = (insert a s).sum (λ i, g i * i (x * y)) - (insert a s).sum (λ i, a x * (g i * i y)) :
congr (congr_arg has_sub.sub (finset.sum_congr rfl $ λ i _, by rw [i.map_mul, mul_assoc]))
(finset.sum_congr rfl $ λ _ _, by rw [mul_assoc, mul_left_comm])
... = (insert a s).sum (λ i, (g i • i : G → L)) (x * y)
- a x * (insert a s).sum (λ i, (g i • i : G → L)) y :
by rw [pi.finset_sum_apply, pi.finset_sum_apply, finset.mul_sum]; refl
... = 0 - a x * 0 : by rw hg; refl
... = 0 : by rw [mul_zero, sub_zero])
i
his,
-- On the other hand, since `a` is not already in `s`, for any character `i ∈ s`
-- there is some element of the monoid on which it differs from `a`.
have h2 : ∀ i : G →* L, i ∈ s → ∃ y, i y ≠ a y, from λ i his,
classical.by_contradiction $ λ h,
have hia : i = a, from monoid_hom.ext $ λ y, classical.by_contradiction $ λ hy, h ⟨y, hy⟩,
has $ hia ▸ his,
-- From these two facts we deduce that `g` actually vanishes on `s`,
have h3 : ∀ i ∈ s, g i = 0, from λ i his, let ⟨y, hy⟩ := h2 i his in
have h : g i • i y = g i • a y, from congr_fun (h1 i his) y,
or.resolve_right (mul_eq_zero.1 $ by rw [mul_sub, sub_eq_zero]; exact h) (sub_ne_zero_of_ne hy),
-- And so, using the fact that the linear combination over `s` and over `insert a s` both vanish,
-- we deduce that `g a = 0`.
have h4 : g a = 0, from calc
g a = g a * 1 : (mul_one _).symm
... = (g a • a : G → L) 1 : by rw ← a.map_one; refl
... = (insert a s).sum (λ i, (g i • i : G → L)) 1 : begin
rw finset.sum_eq_single a,
{ intros i his hia, rw finset.mem_insert at his, rw [h3 i (his.resolve_left hia), zero_smul] },
{ intros haas, exfalso, apply haas, exact finset.mem_insert_self a s }
end
... = 0 : by rw hg; refl,
-- Now we're done; the last two facts together imply that `g` vanishes on every element of `insert a s`.
(finset.forall_mem_insert _ _ _).2 ⟨h4, h3⟩)
lemma le_of_span_le_span {s t u: set M} (zero_ne_one : (0 : R) ≠ 1)
(hl : linear_independent R (subtype.val : u → M )) (hsu : s ⊆ u) (htu : t ⊆ u)
(hst : span R s ≤ span R t) : s ⊆ t :=
begin
have := eq_of_linear_independent_of_span_subtype zero_ne_one
(hl.mono (set.union_subset hsu htu))
(set.subset_union_right _ _)
(set.union_subset (set.subset.trans subset_span hst) subset_span),
rw ← this, apply set.subset_union_left
end
lemma span_le_span_iff {s t u: set M} (zero_ne_one : (0 : R) ≠ 1)
(hl : linear_independent R (subtype.val : u → M )) (hsu : s ⊆ u) (htu : t ⊆ u) :
span R s ≤ span R t ↔ s ⊆ t :=
⟨le_of_span_le_span zero_ne_one hl hsu htu, span_mono⟩
variables (R) (v)
/-- A family of vectors is a basis if it is linearly independent and all vectors are in the span. -/
def is_basis := linear_independent R v ∧ span R (range v) = ⊤
variables {R} {v}
section is_basis
variables {s t : set M} (hv : is_basis R v)
lemma is_basis.mem_span (hv : is_basis R v) : ∀ x, x ∈ span R (range v) := eq_top_iff'.1 hv.2
lemma is_basis.comp (hv : is_basis R v) (f : ι' → ι) (hf : bijective f) :
is_basis R (v ∘ f) :=
begin
split,
{ apply hv.1.comp f hf.1 },
{ rw[set.range_comp, range_iff_surjective.2 hf.2, image_univ, hv.2] }
end
lemma is_basis.injective (hv : is_basis R v) (zero_ne_one : (0 : R) ≠ 1) : injective v :=
λ x y h, linear_independent.injective zero_ne_one hv.1 h
/- Given a basis, any vector can be written as a linear combination of the basis vectors. They are
given by this linear map. This is one direction of `module_equiv_finsupp` -/
def is_basis.repr : M →ₗ (ι →₀ R) :=
(hv.1.repr).comp (linear_map.id.cod_restrict _ hv.mem_span)
lemma is_basis.total_repr (x) : finsupp.total ι M R v (hv.repr x) = x :=
hv.1.total_repr ⟨x, _⟩
lemma is_basis.total_comp_repr : (finsupp.total ι M R v).comp hv.repr = linear_map.id :=
linear_map.ext hv.total_repr
lemma is_basis.repr_ker : hv.repr.ker = ⊥ :=
linear_map.ker_eq_bot.2 $ injective_of_left_inverse hv.total_repr
lemma is_basis.repr_range : hv.repr.range = finsupp.supported R R univ :=
by rw [is_basis.repr, linear_map.range, submodule.map_comp,
linear_map.map_cod_restrict, submodule.map_id, comap_top, map_top, hv.1.repr_range,
finsupp.supported_univ]
lemma is_basis.repr_total (x : ι →₀ R) (hx : x ∈ finsupp.supported R R (univ : set ι)) :
hv.repr (finsupp.total ι M R v x) = x :=
begin
rw [← hv.repr_range, linear_map.mem_range] at hx,
cases hx with w hw,
rw [← hw, hv.total_repr],
end
lemma is_basis.repr_eq_single {i} : hv.repr (v i) = finsupp.single i 1 :=
by apply hv.1.repr_eq_single; simp
/-- Construct a linear map given the value at the basis. -/
def is_basis.constr (f : ι → M') : M →ₗ[R] M' :=
(finsupp.total M' M' R id).comp $ (finsupp.lmap_domain R R f).comp hv.repr
theorem is_basis.constr_apply (f : ι → M') (x : M) :
(hv.constr f : M → M') x = (hv.repr x).sum (λb a, a • f b) :=
by dsimp [is_basis.constr];
rw [finsupp.total_apply, finsupp.sum_map_domain_index]; simp [add_smul]
lemma is_basis.ext {f g : M →ₗ[R] M'} (hv : is_basis R v) (h : ∀i, f (v i) = g (v i)) : f = g :=
begin
apply linear_map.ext (λ x, linear_eq_on (range v) _ (hv.mem_span x)),
exact (λ y hy, exists.elim (set.mem_range.1 hy) (λ i hi, by rw ←hi; exact h i))
end
lemma constr_basis {f : ι → M'} {i : ι} (hv : is_basis R v) :
(hv.constr f : M → M') (v i) = f i :=
by simp [is_basis.constr_apply, hv.repr_eq_single, finsupp.sum_single_index]
lemma constr_eq {g : ι → M'} {f : M →ₗ[R] M'} (hv : is_basis R v)
(h : ∀i, g i = f (v i)) : hv.constr g = f :=
hv.ext $ λ i, (constr_basis hv).trans (h i)
lemma constr_self (f : M →ₗ[R] M') : hv.constr (λ i, f (v i)) = f :=
constr_eq hv $ λ x, rfl
lemma constr_zero (hv : is_basis R v) : hv.constr (λi, (0 : M')) = 0 :=
constr_eq hv $ λ x, rfl
lemma constr_add {g f : ι → M'} (hv : is_basis R v) :
hv.constr (λi, f i + g i) = hv.constr f + hv.constr g :=
constr_eq hv $ by simp [constr_basis hv] {contextual := tt}
lemma constr_neg {f : ι → M'} (hv : is_basis R v) : hv.constr (λi, - f i) = - hv.constr f :=
constr_eq hv $ by simp [constr_basis hv] {contextual := tt}
lemma constr_sub {g f : ι → M'} (hs : is_basis R v) :
hv.constr (λi, f i - g i) = hs.constr f - hs.constr g :=
by simp [constr_add, constr_neg]
-- this only works on functions if `R` is a commutative ring
lemma constr_smul {ι R M M'} [comm_ring R]
[add_comm_group M] [add_comm_group M'] [module R M] [module R M']
{v : ι → R} {f : ι → M'} {a : R} (hv : is_basis R v) {b : M} :
hv.constr (λb, a • f b) = a • hv.constr f :=
constr_eq hv $ by simp [constr_basis hv] {contextual := tt}
lemma constr_range [inhabited ι] (hv : is_basis R v) {f : ι → M'} :
(hv.constr f).range = span R (range f) :=
by rw [is_basis.constr, linear_map.range_comp, linear_map.range_comp, is_basis.repr_range,
finsupp.lmap_domain_supported, ←set.image_univ, ←finsupp.span_eq_map_total, image_id]
/-- Canonical equivalence between a module and the linear combinations of basis vectors. -/
def module_equiv_finsupp (hv : is_basis R v) : M ≃ₗ[R] ι →₀ R :=
(hv.1.total_equiv.trans (linear_equiv.of_top _ hv.2)).symm
/-- Isomorphism between the two modules, given two modules M and M' with respective bases v and v'
and a bijection between the two bases. -/
def equiv_of_is_basis {v : ι → M} {v' : ι' → M'} {f : M → M'} {g : M' → M}
(hv : is_basis R v) (hv' : is_basis R v') (hf : ∀i, f (v i) ∈ range v') (hg : ∀i, g (v' i) ∈ range v)
(hgf : ∀i, g (f (v i)) = v i) (hfg : ∀i, f (g (v' i)) = v' i) :
M ≃ₗ M' :=
{ inv_fun := hv'.constr (g ∘ v'),
left_inv :=
have (hv'.constr (g ∘ v')).comp (hv.constr (f ∘ v)) = linear_map.id,
from hv.ext $ λ i, exists.elim (hf i) (λ i' hi', by simp [constr_basis, hi'.symm]; rw [hi', hgf]),
λ x, congr_arg (λ h:M →ₗ[R] M, h x) this,
right_inv :=
have (hv.constr (f ∘ v)).comp (hv'.constr (g ∘ v')) = linear_map.id,
from hv'.ext $ λ i', exists.elim (hg i') (λ i hi, by simp [constr_basis, hi.symm]; rw [hi, hfg]),
λ y, congr_arg (λ h:M' →ₗ[R] M', h y) this,
..hv.constr (f ∘ v) }
lemma is_basis_inl_union_inr {v : ι → M} {v' : ι' → M'}
(hv : is_basis R v) (hv' : is_basis R v') : is_basis R (sum.elim (inl R M M' ∘ v) (inr R M M' ∘ v')) :=
begin
split,
apply linear_independent_inl_union_inr' hv.1 hv'.1,
rw [sum.elim_range, span_union,
set.range_comp, span_image (inl R M M'), hv.2, map_top,
set.range_comp, span_image (inr R M M'), hv'.2, map_top],
exact linear_map.sup_range_inl_inr
end
end is_basis
lemma is_basis_singleton_one (R : Type*) [unique ι] [ring R] :
is_basis R (λ (_ : ι), (1 : R)) :=
begin
split,
{ refine linear_independent_iff.2 (λ l, _),
rw [finsupp.unique_single l, finsupp.total_single, smul_eq_mul, mul_one],
intro hi,
simp [hi] },
{ refine top_unique (λ _ _, _),
simp [submodule.mem_span_singleton] }
end
protected lemma linear_equiv.is_basis (hs : is_basis R v)
(f : M ≃ₗ[R] M') : is_basis R (f ∘ v) :=
begin
split,
{ apply @linear_independent.image _ _ _ _ _ _ _ _ _ _ hs.1 (f : M →ₗ[R] M'),
simp [linear_equiv.ker f] },
{ rw set.range_comp,
have : span R ((f : M →ₗ[R] M') '' range v) = ⊤,
{ rw [span_image (f : M →ₗ[R] M'), hs.2],
simp },
exact this }
end
lemma is_basis_span (hs : linear_independent R v) :
@is_basis ι R (span R (range v)) (λ i : ι, ⟨v i, subset_span (mem_range_self _)⟩) _ _ _ :=
begin
split,
{ apply linear_independent_span hs },
{ rw eq_top_iff',
intro x,
have h₁ : subtype.val '' set.range (λ i, subtype.mk (v i) _) = range v,
by rw ←set.range_comp,
have h₂ : map (submodule.subtype _) (span R (set.range (λ i, subtype.mk (v i) _)))
= span R (range v),
by rw [←span_image, submodule.subtype_eq_val, h₁],
have h₃ : (x : M) ∈ map (submodule.subtype _) (span R (set.range (λ i, subtype.mk (v i) _))),
by rw h₂; apply subtype.mem x,
rcases mem_map.1 h₃ with ⟨y, hy₁, hy₂⟩,
have h_x_eq_y : x = y,
by rw [subtype.coe_ext, ← hy₂]; simp,
rw h_x_eq_y,
exact hy₁ }
end
lemma is_basis_empty (h_empty : ¬ nonempty ι) (h : ∀x:M, x = 0) : is_basis R (λ x : ι, (0 : M)) :=
⟨ linear_independent_empty_type h_empty,
eq_top_iff'.2 $ assume x, (h x).symm ▸ submodule.zero_mem _ ⟩
lemma is_basis_empty_bot (h_empty : ¬ nonempty ι) : is_basis R (λ _ : ι, (0 : (⊥ : submodule R M))) :=
begin
apply is_basis_empty h_empty,
intro x,
apply subtype.ext.2,
exact (submodule.mem_bot R).1 (subtype.mem x),
end
open fintype
variables [fintype ι] (h : is_basis R v)
/-- A module over R with a finite basis is linearly equivalent to functions from its basis to R. -/
def equiv_fun_basis : M ≃ₗ[R] (ι → R) :=
linear_equiv.trans (module_equiv_finsupp h)
{ to_fun := finsupp.to_fun,
add := λ x y, by ext; exact finsupp.add_apply,
smul := λ x y, by ext; exact finsupp.smul_apply,
..finsupp.equiv_fun_on_fintype }
theorem module.card_fintype [fintype R] [fintype M] :
card M = (card R) ^ (card ι) :=
calc card M = card (ι → R) : card_congr (equiv_fun_basis h).to_equiv
... = card R ^ card ι : card_fun
/-- Given a basis `v` indexed by `ι`, the canonical linear equivalence between `ι → R` and `M` maps
a function `x : ι → R` to the linear combination `∑_i x i • v i`. -/
@[simp] lemma equiv_fun_basis_symm_apply (x : ι → R) :
(equiv_fun_basis h).symm x = finset.sum finset.univ (λi, x i • v i) :=
begin
change finsupp.sum
((finsupp.equiv_fun_on_fintype.symm : (ι → R) ≃ (ι →₀ R)) x) (λ (i : ι) (a : R), a • v i)
= finset.sum finset.univ (λi, x i • v i),
dsimp [finsupp.equiv_fun_on_fintype, finsupp.sum],
rw finset.sum_filter,
refine finset.sum_congr rfl (λi hi, _),
by_cases H : x i = 0,
{ simp [H] },
{ simp [H], refl }
end
end module
section vector_space
variables
{v : ι → V}
[discrete_field K] [add_comm_group V] [add_comm_group V']
[vector_space K V] [vector_space K V']
{s t : set V} {x y z : V}
include K
open submodule
/- TODO: some of the following proofs can generalized with a zero_ne_one predicate type class
(instead of a data containing type class) -/
section
set_option class.instance_max_depth 36
lemma mem_span_insert_exchange : x ∈ span K (insert y s) → x ∉ span K s → y ∈ span K (insert x s) :=
begin
simp [mem_span_insert],
rintro a z hz rfl h,
refine ⟨a⁻¹, -a⁻¹ • z, smul_mem _ _ hz, _⟩,
have a0 : a ≠ 0, {rintro rfl, simp * at *},
simp [a0, smul_add, smul_smul]
end
end
lemma linear_independent_iff_not_mem_span : linear_independent K v ↔ (∀i, v i ∉ span K (v '' (univ \ {i}))) :=
begin
apply linear_independent_iff_not_smul_mem_span.trans,
split,
{ intros h i h_in_span,
apply one_ne_zero (h i 1 (by simp [h_in_span])) },
{ intros h i a ha,
by_contradiction ha',
exact false.elim (h _ ((smul_mem_iff _ ha').1 ha)) }
end
lemma linear_independent_unique [unique ι] (h : v (default ι) ≠ 0): linear_independent K v :=
begin
rw linear_independent_iff,
intros l hl,
ext i,
rw [unique.eq_default i, finsupp.zero_apply],
by_contra hc,
have := smul_smul (l (default ι))⁻¹ (l (default ι)) (v (default ι)),
rw [finsupp.unique_single l, finsupp.total_single] at hl,
rw [hl, inv_mul_cancel hc, smul_zero, one_smul] at this,
exact h this.symm
end
lemma linear_independent_singleton {x : V} (hx : x ≠ 0) : linear_independent K (λ x, x : ({x} : set V) → V) :=
begin
apply @linear_independent_unique _ _ _ _ _ _ _ _ _,
apply set.unique_singleton,
apply hx,
end
lemma disjoint_span_singleton {p : submodule K V} {x : V} (x0 : x ≠ 0) :
disjoint p (span K {x}) ↔ x ∉ p :=
⟨λ H xp, x0 (disjoint_def.1 H _ xp (singleton_subset_iff.1 subset_span:_)),
begin
simp [disjoint_def, mem_span_singleton],
rintro xp y yp a rfl,
by_cases a0 : a = 0, {simp [a0]},
exact xp.elim ((smul_mem_iff p a0).1 yp),
end⟩
lemma linear_independent.insert (hs : linear_independent K (λ b, b : s → V)) (hx : x ∉ span K s) :
linear_independent K (λ b, b : insert x s → V) :=
begin
rw ← union_singleton,
have x0 : x ≠ 0 := mt (by rintro rfl; apply zero_mem _) hx,
apply linear_independent_union hs (linear_independent_singleton x0),
rwa [disjoint_span_singleton x0]
end
lemma exists_linear_independent (hs : linear_independent K (λ x, x : s → V)) (hst : s ⊆ t) :
∃b⊆t, s ⊆ b ∧ t ⊆ span K b ∧ linear_independent K (λ x, x : b → V) :=
begin
rcases zorn.zorn_subset₀ {b | b ⊆ t ∧ linear_independent K (λ x, x : b → V)} _ _
⟨hst, hs⟩ with ⟨b, ⟨bt, bi⟩, sb, h⟩,
{ refine ⟨b, bt, sb, λ x xt, _, bi⟩,
haveI := classical.dec (x ∈ span K b),
by_contra hn,
apply hn,
rw ← h _ ⟨insert_subset.2 ⟨xt, bt⟩, bi.insert hn⟩ (subset_insert _ _),
exact subset_span (mem_insert _ _) },
{ refine λ c hc cc c0, ⟨⋃₀ c, ⟨_, _⟩, λ x, _⟩,
{ exact sUnion_subset (λ x xc, (hc xc).1) },
{ exact linear_independent_sUnion_of_directed cc.directed_on (λ x xc, (hc xc).2) },
{ exact subset_sUnion_of_mem } }
end
lemma exists_subset_is_basis (hs : linear_independent K (λ x, x : s → V)) :
∃b, s ⊆ b ∧ is_basis K (λ i : b, i.val) :=
let ⟨b, hb₀, hx, hb₂, hb₃⟩ := exists_linear_independent hs (@subset_univ _ _) in
⟨ b, hx,
@linear_independent.restrict_of_comp_subtype _ _ _ id _ _ _ _ hb₃,
by simp; exact eq_top_iff.2 hb₂⟩
variables (K V)
lemma exists_is_basis : ∃b : set V, is_basis K (λ i : b, i.val) :=
let ⟨b, _, hb⟩ := exists_subset_is_basis linear_independent_empty in ⟨b, hb⟩
variables {K V}
-- TODO(Mario): rewrite?
lemma exists_of_linear_independent_of_finite_span {t : finset V}
(hs : linear_independent K (λ x, x : s → V)) (hst : s ⊆ (span K ↑t : submodule K V)) :
∃t':finset V, ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ t'.card = t.card :=
have ∀t, ∀(s' : finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ (span K ↑(s' ∪ t) : submodule K V) →
∃t':finset V, ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ t'.card = (s' ∪ t).card :=
assume t, finset.induction_on t
(assume s' hs' _ hss',
have s = ↑s',
from eq_of_linear_independent_of_span_subtype (@zero_ne_one K _) hs hs' $
by simpa using hss',
⟨s', by simp [this]⟩)
(assume b₁ t hb₁t ih s' hs' hst hss',
have hb₁s : b₁ ∉ s,
from assume h,
have b₁ ∈ s ∩ ↑(insert b₁ t), from ⟨h, finset.mem_insert_self _ _⟩,
by rwa [hst] at this,
have hb₁s' : b₁ ∉ s', from assume h, hb₁s $ hs' h,
have hst : s ∩ ↑t = ∅,
from eq_empty_of_subset_empty $ subset.trans
(by simp [inter_subset_inter, subset.refl]) (le_of_eq hst),
classical.by_cases
(assume : s ⊆ (span K ↑(s' ∪ t) : submodule K V),
let ⟨u, hust, hsu, eq⟩ := ih _ hs' hst this in
have hb₁u : b₁ ∉ u, from assume h, (hust h).elim hb₁s hb₁t,
⟨insert b₁ u, by simp [insert_subset_insert hust],
subset.trans hsu (by simp), by simp [eq, hb₁t, hb₁s', hb₁u]⟩)
(assume : ¬ s ⊆ (span K ↑(s' ∪ t) : submodule K V),
let ⟨b₂, hb₂s, hb₂t⟩ := not_subset.mp this in
have hb₂t' : b₂ ∉ s' ∪ t, from assume h, hb₂t $ subset_span h,
have s ⊆ (span K ↑(insert b₂ s' ∪ t) : submodule K V), from
assume b₃ hb₃,
have ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t) : set V),
by simp [insert_eq, -singleton_union, -union_singleton, union_subset_union, subset.refl, subset_union_right],
have hb₃ : b₃ ∈ span K (insert b₁ (insert b₂ ↑(s' ∪ t) : set V)),
from span_mono this (hss' hb₃),
have s ⊆ (span K (insert b₁ ↑(s' ∪ t)) : submodule K V),
by simpa [insert_eq, -singleton_union, -union_singleton] using hss',
have hb₁ : b₁ ∈ span K (insert b₂ ↑(s' ∪ t)),
from mem_span_insert_exchange (this hb₂s) hb₂t,
by rw [span_insert_eq_span hb₁] at hb₃; simpa using hb₃,
let ⟨u, hust, hsu, eq⟩ := ih _ (by simp [insert_subset, hb₂s, hs']) hst this in
⟨u, subset.trans hust $ union_subset_union (subset.refl _) (by simp [subset_insert]),
hsu, by rw [finset.union_comm] at hb₂t'; simp [eq, hb₂t', hb₁t, hb₁s']⟩)),
begin
letI := classical.dec_pred (λx, x ∈ s),
have eq : t.filter (λx, x ∈ s) ∪ t.filter (λx, x ∉ s) = t,
{ apply finset.ext.mpr,
intro x,
by_cases x ∈ s; simp *, finish },
apply exists.elim (this (t.filter (λx, x ∉ s)) (t.filter (λx, x ∈ s))
(by simp [set.subset_def]) (by simp [set.ext_iff] {contextual := tt}) (by rwa [eq])),
intros u h,
exact ⟨u, subset.trans h.1 (by simp [subset_def, and_imp, or_imp_distrib] {contextual:=tt}),
h.2.1, by simp only [h.2.2, eq]⟩
end
lemma exists_finite_card_le_of_finite_of_linear_independent_of_span
(ht : finite t) (hs : linear_independent K (λ x, x : s → V)) (hst : s ⊆ span K t) :
∃h : finite s, h.to_finset.card ≤ ht.to_finset.card :=
have s ⊆ (span K ↑(ht.to_finset) : submodule K V), by simp; assumption,
let ⟨u, hust, hsu, eq⟩ := exists_of_linear_independent_of_finite_span hs this in
have finite s, from finite_subset u.finite_to_set hsu,
⟨this, by rw [←eq]; exact (finset.card_le_of_subset $ finset.coe_subset.mp $ by simp [hsu])⟩
lemma exists_left_inverse_linear_map_of_injective {f : V →ₗ[K] V'}
(hf_inj : f.ker = ⊥) : ∃g:V' →ₗ V, g.comp f = linear_map.id :=
begin
rcases exists_is_basis K V with ⟨B, hB⟩,
have hB₀ : _ := hB.1.to_subtype_range,
have : linear_independent K (λ x, x : f '' B → V'),
{ have h₁ := hB₀.image_subtype (show disjoint (span K (range (λ i : B, i.val))) (linear_map.ker f), by simp [hf_inj]),
have h₂ : range (λ (i : B), i.val) = B := subtype.range_val B,
rwa h₂ at h₁ },
rcases exists_subset_is_basis this with ⟨C, BC, hC⟩,
haveI : inhabited V := ⟨0⟩,
use hC.constr (function.restrict (inv_fun f) C : C → V),
apply @is_basis.ext _ _ _ _ _ _ _ _ _ _ _ _ hB,
intros b,
rw image_subset_iff at BC,
simp,
have := BC (subtype.mem b),
rw mem_preimage at this,
have : f (b.val) = (subtype.mk (f ↑b) (begin rw ←mem_preimage, exact BC (subtype.mem b) end) : C).val,
by simp; unfold_coes,
rw this,
rw [constr_basis hC],
exact left_inverse_inv_fun (linear_map.ker_eq_bot.1 hf_inj) _,
end
lemma exists_right_inverse_linear_map_of_surjective {f : V →ₗ[K] V'}
(hf_surj : f.range = ⊤) : ∃g:V' →ₗ V, f.comp g = linear_map.id :=
begin
rcases exists_is_basis K V' with ⟨C, hC⟩,
haveI : inhabited V := ⟨0⟩,
use hC.constr (function.restrict (inv_fun f) C : C → V),
apply @is_basis.ext _ _ _ _ _ _ _ _ _ _ _ _ hC,
intros c,
simp [constr_basis hC],
exact right_inverse_inv_fun (linear_map.range_eq_top.1 hf_surj) _
end
set_option class.instance_max_depth 49
open submodule linear_map
theorem quotient_prod_linear_equiv (p : submodule K V) :
nonempty ((p.quotient × p) ≃ₗ[K] V) :=
begin
haveI := classical.dec_eq (quotient p),
rcases exists_right_inverse_linear_map_of_surjective p.range_mkq with ⟨f, hf⟩,
have mkf : ∀ x, submodule.quotient.mk (f x) = x := linear_map.ext_iff.1 hf,
have fp : ∀ x, x - f (p.mkq x) ∈ p :=
λ x, (submodule.quotient.eq p).1 (mkf (p.mkq x)).symm,
refine ⟨linear_equiv.of_linear (f.copair p.subtype)
(p.mkq.pair (cod_restrict p (linear_map.id - f.comp p.mkq) fp))
(by ext; simp) _⟩,
ext ⟨⟨x⟩, y, hy⟩; simp,
{ apply (submodule.quotient.eq p).2,
simpa using sub_mem p hy (fp x) },
{ refine subtype.coe_ext.2 _,
simp [mkf, (submodule.quotient.mk_eq_zero p).2 hy] }
end
open fintype
theorem vector_space.card_fintype [fintype K] [fintype V] :
∃ n : ℕ, card V = (card K) ^ n :=
begin
apply exists.elim (exists_is_basis K V),
intros b hb,
haveI := classical.dec_pred (λ x, x ∈ b),
use card b,
exact module.card_fintype hb,
end
end vector_space
namespace pi
open set linear_map
section module
variables {η : Type*} {ιs : η → Type*} {Ms : η → Type*}
variables [ring R] [∀i, add_comm_group (Ms i)] [∀i, module R (Ms i)] [fintype η]
lemma linear_independent_std_basis
(v : Πj, ιs j → (Ms j)) (hs : ∀i, linear_independent R (v i)) :
linear_independent R (λ (ji : Σ j, ιs j), std_basis R Ms ji.1 (v ji.1 ji.2)) :=
begin
have hs' : ∀j : η, linear_independent R (λ i : ιs j, std_basis R Ms j (v j i)),
{ intro j,
apply linear_independent.image (hs j),
simp [ker_std_basis] },
apply linear_independent_Union_finite hs',
{ assume j J _ hiJ,
simp [(set.Union.equations._eqn_1 _).symm, submodule.span_image, submodule.span_Union],
have h₀ : ∀ j, span R (range (λ (i : ιs j), std_basis R Ms j (v j i)))
≤ range (std_basis R Ms j),
{ intro j,
rw [span_le, linear_map.range_coe],
apply range_comp_subset_range },
have h₁ : span R (range (λ (i : ιs j), std_basis R Ms j (v j i)))
≤ ⨆ i ∈ {j}, range (std_basis R Ms i),
{ rw @supr_singleton _ _ _ (λ i, linear_map.range (std_basis R (λ (j : η), Ms j) i)),
apply h₀ },
have h₂ : (⨆ j ∈ J, span R (range (λ (i : ιs j), std_basis R Ms j (v j i)))) ≤
⨆ j ∈ J, range (std_basis R (λ (j : η), Ms j) j) :=
supr_le_supr (λ i, supr_le_supr (λ H, h₀ i)),
have h₃ : disjoint (λ (i : η), i ∈ {j}) J,
{ convert set.disjoint_singleton_left.2 hiJ,
rw ←@set_of_mem_eq _ {j},
refl },
refine disjoint_mono h₁ h₂
(disjoint_std_basis_std_basis _ _ _ _ h₃), }
end
lemma is_basis_std_basis (s : Πj, ιs j → (Ms j)) (hs : ∀j, is_basis R (s j)) :
is_basis R (λ (ji : Σ j, ιs j), std_basis R Ms ji.1 (s ji.1 ji.2)) :=
begin
split,
{ apply linear_independent_std_basis _ (assume i, (hs i).1) },
have h₁ : Union (λ j, set.range (std_basis R Ms j ∘ s j))
⊆ range (λ (ji : Σ (j : η), ιs j), (std_basis R Ms (ji.fst)) (s (ji.fst) (ji.snd))),
{ apply Union_subset, intro i,
apply range_comp_subset_range (λ x : ιs i, (⟨i, x⟩ : Σ (j : η), ιs j))
(λ (ji : Σ (j : η), ιs j), std_basis R Ms (ji.fst) (s (ji.fst) (ji.snd))) },
have h₂ : ∀ i, span R (range (std_basis R Ms i ∘ s i)) = range (std_basis R Ms i),
{ intro i,
rw [set.range_comp, submodule.span_image, (assume i, (hs i).2), submodule.map_top] },
apply eq_top_mono,
apply span_mono h₁,
rw span_Union,
simp only [h₂],
apply supr_range_std_basis
end
section
variables (R η)
lemma is_basis_fun₀ : is_basis R
(λ (ji : Σ (j : η), (λ _, unit) j),
(std_basis R (λ (i : η), R) (ji.fst)) 1) :=
begin
haveI := classical.dec_eq,
apply @is_basis_std_basis R η (λi:η, unit) (λi:η, R) _ _ _ _ (λ _ _, (1 : R))
(assume i, @is_basis_singleton_one _ _ _ _),
end
lemma is_basis_fun : is_basis R (λ i, std_basis R (λi:η, R) i 1) :=
begin
apply is_basis.comp (is_basis_fun₀ R η) (λ i, ⟨i, punit.star⟩),
apply bijective_iff_has_inverse.2,
use (λ x, x.1),
simp [function.left_inverse, function.right_inverse],
intros _ b,
rw [unique.eq_default b, unique.eq_default punit.star]
end
end
end module
end pi