Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Tim Baanen -/ import data.matrix.basic import data.matrix.pequiv import group_theory.perm.sign universes u v open equiv equiv.perm finset function namespace matrix variables {n : Type u} [fintype n] [decidable_eq n] {R : Type v} [comm_ring R] local notation `ε` σ:max := ((sign σ : ℤ ) : R) /-- The determinant of a matrix given by the Leibniz formula. -/ definition det (M : matrix n n R) : R := univ.sum (λ (σ : perm n), ε σ * univ.prod (λ i, M (σ i) i)) @[simp] lemma det_diagonal {d : n → R} : det (diagonal d) = univ.prod d := begin refine (finset.sum_eq_single 1 _ _).trans _, { intros σ h1 h2, cases not_forall.1 (mt (equiv.ext _ _) h2) with x h3, convert ring.mul_zero _, apply finset.prod_eq_zero, { change x ∈ _, simp }, exact if_neg h3 }, { simp }, { simp } end @[simp] lemma det_zero (h : nonempty n) : det (0 : matrix n n R) = 0 := by rw [← diagonal_zero, det_diagonal, finset.prod_const, ← fintype.card, zero_pow (fintype.card_pos_iff.2 h)] @[simp] lemma det_one : det (1 : matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] lemma det_mul_aux {M N : matrix n n R} {p : n → n} (H : ¬bijective p) : univ.sum (λ σ : perm n, (ε σ) * (univ.prod (λ x, M (σ x) (p x) * N (p x) x))) = 0 := begin obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j, { rw [← fintype.injective_iff_bijective, injective] at H, push_neg at H, exact H }, exact sum_involution (λ σ _, σ * swap i j) (λ σ _, have ∀ a, p (swap i j a) = p a := λ a, by simp only [swap_apply_def]; split_ifs; cc, have univ.prod (λ x, M (σ x) (p x)) = univ.prod (λ x, M ((σ * swap i j) x) (p x)), from prod_bij (λ a _, swap i j a) (λ _ _, mem_univ _) (by simp [this]) (λ _ _ _ _ h, (swap i j).injective h) (λ b _, ⟨swap i j b, mem_univ _, by simp⟩), by simp [sign_mul, this, sign_swap hij, prod_mul_distrib]) (λ σ _ _ h, hij (σ.injective $ by conv {to_lhs, rw ← h}; simp)) (λ _ _, mem_univ _) (λ _ _, equiv.ext _ _ $ by simp) end @[simp] lemma det_mul (M N : matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = univ.sum (λ σ : perm n, (univ.pi (λ a, univ)).sum (λ (p : Π (a : n), a ∈ univ → n), ε σ * univ.attach.prod (λ i, M (σ i.1) (p i.1 (mem_univ _)) * N (p i.1 (mem_univ _)) i.1))) : by simp only [det, mul_val', prod_sum, mul_sum] ... = univ.sum (λ σ : perm n, univ.sum (λ p : n → n, ε σ * univ.prod (λ i, M (σ i) (p i) * N (p i) i))) : sum_congr rfl (λ σ _, sum_bij (λ f h i, f i (mem_univ _)) (λ _ _, mem_univ _) (by simp) (by simp [funext_iff]) (λ b _, ⟨λ i hi, b i, by simp⟩)) ... = univ.sum (λ p : n → n, univ.sum (λ σ : perm n, ε σ * univ.prod (λ i, M (σ i) (p i) * N (p i) i))) : finset.sum_comm ... = ((@univ (n → n) _).filter bijective).sum (λ p : n → n, univ.sum (λ σ : perm n, ε σ * univ.prod (λ i, M (σ i) (p i) * N (p i) i))) : eq.symm $ sum_subset (filter_subset _) (λ f _ hbij, det_mul_aux $ by simpa using hbij) ... = (@univ (perm n) _).sum (λ τ, univ.sum (λ σ : perm n, ε σ * univ.prod (λ i, M (σ i) (τ i) * N (τ i) i))) : sum_bij (λ p h, equiv.of_bijective (mem_filter.1 h).2) (λ _ _, mem_univ _) (λ _ _, rfl) (λ _ _ _ _ h, by injection h) (λ b _, ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, eq_of_to_fun_eq rfl⟩) ... = univ.sum (λ σ : perm n, univ.sum (λ τ : perm n, (univ.prod (λ i, N (σ i) i) * ε τ) * univ.prod (λ j, M (τ j) (σ j)))) : by simp [mul_sum, det, mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] ... = univ.sum (λ σ : perm n, univ.sum (λ τ : perm n, (univ.prod (λ i, N (σ i) i) * (ε σ * ε τ)) * univ.prod (λ i, M (τ i) i))) : sum_congr rfl (λ σ _, sum_bij (λ τ _, τ * σ⁻¹) (λ _ _, mem_univ _) (λ τ _, have univ.prod (λ j, M (τ j) (σ j)) = univ.prod (λ j, M ((τ * σ⁻¹) j) j), by rw prod_univ_perm σ⁻¹; simp [mul_apply], have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε ((τ * σ⁻¹) * σ) : by rw [mul_comm, sign_mul (τ * σ⁻¹)]; simp [sign_mul] ... = ε τ : by simp, by rw h; simp [this, mul_comm, mul_assoc, mul_left_comm]) (λ _ _ _ _, (mul_right_inj _).1) (λ τ _, ⟨τ * σ, by simp⟩)) ... = det M * det N : by simp [det, mul_assoc, mul_sum, mul_comm, mul_left_comm] instance : is_monoid_hom (det : matrix n n R → R) := { map_one := det_one, map_mul := det_mul } /-- Transposing a matrix preserves the determinant. -/ @[simp] lemma det_transpose (M : matrix n n R) : M.transpose.det = M.det := begin apply sum_bij (λ σ _, σ⁻¹), { intros σ _, apply mem_univ }, { intros σ _, rw [sign_inv], congr' 1, apply prod_bij (λ i _, σ i), { intros i _, apply mem_univ }, { intros i _, simp }, { intros i j _ _ h, simp at h, assumption }, { intros i _, use σ⁻¹ i, finish } }, { intros σ σ' _ _ h, simp at h, assumption }, { intros σ _, use σ⁻¹, finish } end /-- The determinant of a permutation matrix equals its sign. -/ @[simp] lemma det_permutation (σ : perm n) : matrix.det (σ.to_pequiv.to_matrix : matrix n n R) = σ.sign := begin suffices : matrix.det (σ.to_pequiv.to_matrix) = ↑σ.sign * det (1 : matrix n n R), { simp [this] }, unfold det, rw mul_sum, apply sum_bij (λ τ _, σ * τ), { intros τ _, apply mem_univ }, { intros τ _, conv_lhs { rw [←one_mul (sign τ), ←int.units_pow_two (sign σ)] }, conv_rhs { rw [←mul_assoc, coe_coe, sign_mul, units.coe_mul, int.cast_mul, ←mul_assoc] }, congr, { norm_num }, { ext i, apply pequiv.equiv_to_pequiv_to_matrix } }, { intros τ τ' _ _, exact (mul_left_inj σ).mp }, { intros τ _, use σ⁻¹ * τ, use (mem_univ _), exact (mul_inv_cancel_left _ _).symm } end /-- Permuting the columns changes the sign of the determinant. -/ lemma det_permute (σ : perm n) (M : matrix n n R) : matrix.det (λ i, M (σ i)) = σ.sign * M.det := by rw [←det_permutation, ←det_mul, pequiv.to_pequiv_mul_matrix] section det_zero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ /-- `mod_swap i j` contains permutations up to swapping `i` and `j`. We use this to partition permutations in the expression for the determinant, such that each partitions sums up to `0`. -/ def mod_swap {n : Type u} [decidable_eq n] (i j : n) : setoid (perm n) := ⟨ λ σ τ, σ = τ ∨ σ = swap i j * τ, λ σ, or.inl (refl σ), λ σ τ h, or.cases_on h (λ h, or.inl h.symm) (λ h, or.inr (by rw [h, swap_mul_self_mul])), λ σ τ υ hστ hτυ, by cases hστ; cases hτυ; try {rw [hστ, hτυ, swap_mul_self_mul]}; finish⟩ instance (i j : n) : decidable_rel (mod_swap i j).r := λ σ τ, or.decidable variables {M : matrix n n R} {i j : n} /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := begin have swap_invariant : ∀ k, M (swap i j k) = M k, { intros k, rw [swap_apply_def], by_cases k = i, { rw [if_pos h, h, ←hij] }, rw [if_neg h], by_cases k = j, { rw [if_pos h, h, hij] }, rw [if_neg h] }, have : ∀ σ, _root_.disjoint (_root_.singleton σ) (_root_.singleton (swap i j * σ)), { intros σ, rw [finset.singleton_eq_singleton, finset.singleton_eq_singleton, disjoint_singleton], apply (not_congr mem_singleton).mpr, exact (not_congr swap_mul_eq_iff).mpr i_ne_j }, apply finset.sum_cancels_of_partition_cancels (mod_swap i j), intros σ _, erw [filter_or, filter_eq', filter_eq', if_pos (mem_univ σ), if_pos (mem_univ (swap i j * σ)), sum_union (this σ), sum_singleton, sum_singleton], convert add_right_neg (↑↑(sign σ) * finset.prod univ (λ (i : n), M (σ i) i)), rw [neg_mul_eq_neg_mul], congr, { rw [sign_mul, sign_swap i_ne_j], norm_num }, ext j, rw [mul_apply, swap_invariant] end end det_zero end matrix