Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2019 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Johannes Hölzl, Casper Putz The equivalence between matrices and linear maps. -/ import data.matrix.basic import linear_algebra.dimension linear_algebra.tensor_product /-! # Linear maps and matrices This file defines the maps to send matrices to a linear map, and to send linear maps between modules with a finite bases to matrices. This defines a linear equivalence between linear maps between finite-dimensional vector spaces and matrices indexed by the respective bases. Some results are proved about the linear map corresponding to a diagonal matrix (range, ker and rank). ## Main definitions to_lin, to_matrix, linear_equiv_matrix ## Tags linear_map, matrix, linear_equiv, diagonal -/ noncomputable theory open set submodule universes u v w variables {l m n : Type u} [fintype l] [fintype m] [fintype n] namespace matrix variables {R : Type v} [comm_ring R] instance [decidable_eq m] [decidable_eq n] (R) [fintype R] : fintype (matrix m n R) := by unfold matrix; apply_instance /-- Evaluation of matrices gives a linear map from matrix m n R to linear maps (n → R) →ₗ[R] (m → R). -/ def eval : (matrix m n R) →ₗ[R] ((n → R) →ₗ[R] (m → R)) := begin refine linear_map.mk₂ R mul_vec _ _ _ _, { assume M N v, funext x, change finset.univ.sum (λy:n, (M x y + N x y) * v y) = _, simp only [_root_.add_mul, finset.sum_add_distrib], refl }, { assume c M v, funext x, change finset.univ.sum (λy:n, (c * M x y) * v y) = _, simp only [_root_.mul_assoc, finset.mul_sum.symm], refl }, { assume M v w, funext x, change finset.univ.sum (λy:n, M x y * (v y + w y)) = _, simp [_root_.mul_add, finset.sum_add_distrib], refl }, { assume c M v, funext x, change finset.univ.sum (λy:n, M x y * (c * v y)) = _, rw [show (λy:n, M x y * (c * v y)) = (λy:n, c * (M x y * v y)), { funext n, ac_refl }, ← finset.mul_sum], refl } end /-- Evaluation of matrices gives a map from matrix m n R to linear maps (n → R) →ₗ[R] (m → R). -/ def to_lin : matrix m n R → (n → R) →ₗ[R] (m → R) := eval.to_fun lemma to_lin_add (M N : matrix m n R) : (M + N).to_lin = M.to_lin + N.to_lin := matrix.eval.map_add M N @[simp] lemma to_lin_zero : (0 : matrix m n R).to_lin = 0 := matrix.eval.map_zero instance to_lin.is_linear_map : @is_linear_map R (matrix m n R) ((n → R) →ₗ[R] (m → R)) _ _ _ _ _ to_lin := matrix.eval.is_linear instance to_lin.is_add_monoid_hom : @is_add_monoid_hom (matrix m n R) ((n → R) →ₗ[R] (m → R)) _ _ to_lin := { map_zero := to_lin_zero, map_add := to_lin_add } @[simp] lemma to_lin_apply (M : matrix m n R) (v : n → R) : (M.to_lin : (n → R) → (m → R)) v = mul_vec M v := rfl lemma mul_to_lin [decidable_eq l] (M : matrix m n R) (N : matrix n l R) : (M.mul N).to_lin = M.to_lin.comp N.to_lin := begin ext v x, simp [to_lin_apply, mul_vec, matrix.mul, finset.sum_mul, finset.mul_sum], rw [finset.sum_comm], congr, funext x, congr, funext y, rw [mul_assoc] end end matrix namespace linear_map variables {R : Type v} [comm_ring R] /-- The linear map from linear maps (n → R) →ₗ[R] (m → R) to matrix m n R. -/ def to_matrixₗ [decidable_eq n] : ((n → R) →ₗ[R] (m → R)) →ₗ[R] matrix m n R := begin refine linear_map.mk (λ f i j, f (λ n, ite (j = n) 1 0) i) _ _, { assume f g, simp only [add_apply], refl }, { assume f g, simp only [smul_apply], refl } end /-- The map from linear maps (n → R) →ₗ[R] (m → R) to matrix m n R. -/ def to_matrix [decidable_eq n] : ((n → R) →ₗ[R] (m → R)) → matrix m n R := to_matrixₗ.to_fun end linear_map section linear_equiv_matrix variables {R : Type v} [comm_ring R] [decidable_eq n] open finsupp matrix linear_map /-- to_lin is the left inverse of to_matrix. -/ lemma to_matrix_to_lin {f : (n → R) →ₗ[R] (m → R)} : to_lin (to_matrix f) = f := begin ext : 1, -- Show that the two sides are equal by showing that they are equal on a basis convert linear_eq_on (set.range _) _ (is_basis.mem_span (@pi.is_basis_fun R n _ _) _), assume e he, rw [@std_basis_eq_single R _ _ _ 1] at he, cases (set.mem_range.mp he) with i h, ext j, change finset.univ.sum (λ k, (f.to_fun (λ l, ite (k = l) 1 0)) j * (e k)) = _, rw [←h], conv_lhs { congr, skip, funext, rw [mul_comm, ←smul_eq_mul, ←pi.smul_apply, ←linear_map.smul], rw [show _ = ite (i = k) (1:R) 0, by convert single_apply], rw [show f.to_fun (ite (i = k) (1:R) 0 • (λ l, ite (k = l) 1 0)) = ite (i = k) (f.to_fun _) 0, { split_ifs, { rw [one_smul] }, { rw [zero_smul], exact linear_map.map_zero f } }] }, convert finset.sum_eq_single i _ _, { rw [if_pos rfl], convert rfl, ext, congr }, { assume _ _ hbi, rw [if_neg $ ne.symm hbi], refl }, { assume hi, exact false.elim (hi $ finset.mem_univ i) } end /-- to_lin is the right inverse of to_matrix. -/ lemma to_lin_to_matrix {M : matrix m n R} : to_matrix (to_lin M) = M := begin ext, change finset.univ.sum (λ y, M i y * ite (j = y) 1 0) = M i j, have h1 : (λ y, M i y * ite (j = y) 1 0) = (λ y, ite (j = y) (M i y) 0), { ext, split_ifs, exact mul_one _, exact ring.mul_zero _ }, have h2 : finset.univ.sum (λ y, ite (j = y) (M i y) 0) = (finset.singleton j).sum (λ y, ite (j = y) (M i y) 0), { refine (finset.sum_subset _ _).symm, { intros _ H, rwa finset.mem_singleton.1 H, exact finset.mem_univ _ }, { exact λ _ _ H, if_neg (mt (finset.mem_singleton.2 ∘ eq.symm) H) } }, rw [h1, h2, finset.sum_singleton], exact if_pos rfl end /-- Linear maps (n → R) →ₗ[R] (m → R) are linearly equivalent to matrix m n R. -/ def linear_equiv_matrix' : ((n → R) →ₗ[R] (m → R)) ≃ₗ[R] matrix m n R := { to_fun := to_matrix, inv_fun := to_lin, right_inv := λ _, to_lin_to_matrix, left_inv := λ _, to_matrix_to_lin, add := to_matrixₗ.add, smul := to_matrixₗ.smul } /-- Given a basis of two modules M₁ and M₂ over a commutative ring R, we get a linear equivalence between linear maps M₁ →ₗ M₂ and matrices over R indexed by the bases. -/ def linear_equiv_matrix {ι κ M₁ M₂ : Type*} [add_comm_group M₁] [module R M₁] [add_comm_group M₂] [module R M₂] [fintype ι] [decidable_eq ι] [fintype κ] [decidable_eq κ] {v₁ : ι → M₁} {v₂ : κ → M₂} (hv₁ : is_basis R v₁) (hv₂ : is_basis R v₂) : (M₁ →ₗ[R] M₂) ≃ₗ[R] matrix κ ι R := linear_equiv.trans (linear_equiv.arrow_congr (equiv_fun_basis hv₁) (equiv_fun_basis hv₂)) linear_equiv_matrix' end linear_equiv_matrix namespace matrix open_locale matrix section trace variables {R : Type v} {M : Type w} [ring R] [add_comm_group M] [module R M] /-- The diagonal of a square matrix. -/ def diag (n : Type u) (R : Type v) (M : Type w) [ring R] [add_comm_group M] [module R M] [fintype n] : (matrix n n M) →ₗ[R] n → M := { to_fun := λ A i, A i i, add := by { intros, ext, refl, }, smul := by { intros, ext, refl, } } @[simp] lemma diag_one [decidable_eq n] : diag n R R 1 = λ i, 1 := by { dunfold diag, ext, simp [one_val_eq] } @[simp] lemma diag_transpose (A : matrix n n M) : diag n R M Aᵀ = diag n R M A := rfl /-- The trace of a square matrix. -/ def trace (n : Type u) (R : Type v) (M : Type w) [ring R] [add_comm_group M] [module R M] [fintype n] : (matrix n n M) →ₗ[R] M := { to_fun := finset.univ.sum ∘ (diag n R M), add := by { intros, apply finset.sum_add_distrib, }, smul := by { intros, simp [finset.smul_sum], } } @[simp] lemma trace_one [decidable_eq n] : trace n R R 1 = fintype.card n := have h : trace n R R 1 = finset.univ.sum (diag n R R 1) := rfl, by rw [h, diag_one, finset.sum_const, add_monoid.smul_one]; refl @[simp] lemma trace_transpose (A : matrix n n M) : trace n R M Aᵀ = trace n R M A := rfl @[simp] lemma trace_transpose_mul [decidable_eq n] (A : matrix m n R) (B : matrix n m R) : trace n R R (Aᵀ ⬝ Bᵀ) = trace m R R (A ⬝ B) := finset.sum_comm lemma trace_mul_comm {S : Type v} [comm_ring S] [decidable_eq n] (A : matrix m n S) (B : matrix n m S) : trace n S S (B ⬝ A) = trace m S S (A ⬝ B) := by rw [←trace_transpose, ←trace_transpose_mul, transpose_mul] end trace section ring variables {R : Type v} [comm_ring R] open linear_map matrix lemma proj_diagonal [decidable_eq m] (i : m) (w : m → R) : (proj i).comp (to_lin (diagonal w)) = (w i) • proj i := by ext j; simp [mul_vec_diagonal] lemma diagonal_comp_std_basis [decidable_eq n] (w : n → R) (i : n) : (diagonal w).to_lin.comp (std_basis R (λ_:n, R) i) = (w i) • std_basis R (λ_:n, R) i := begin ext a j, simp only [linear_map.comp_apply, smul_apply, to_lin_apply, mul_vec_diagonal, smul_apply, pi.smul_apply, smul_eq_mul], by_cases i = j, { subst h }, { rw [std_basis_ne R (λ_:n, R) _ _ (ne.symm h), _root_.mul_zero, _root_.mul_zero] } end end ring section vector_space variables {K : Type u} [discrete_field K] -- maybe try to relax the universe constraint open linear_map matrix lemma rank_vec_mul_vec [decidable_eq n] (w : m → K) (v : n → K) : rank (vec_mul_vec w v).to_lin ≤ 1 := begin rw [vec_mul_vec_eq, mul_to_lin], refine le_trans (rank_comp_le1 _ _) _, refine le_trans (rank_le_domain _) _, rw [dim_fun', ← cardinal.fintype_card], exact le_refl _ end set_option class.instance_max_depth 100 lemma diagonal_to_lin [decidable_eq m] (w : m → K) : (diagonal w).to_lin = linear_map.pi (λi, w i • linear_map.proj i) := by ext v j; simp [mul_vec_diagonal] lemma ker_diagonal_to_lin [decidable_eq m] (w : m → K) : ker (diagonal w).to_lin = (⨆i∈{i | w i = 0 }, range (std_basis K (λi, K) i)) := begin rw [← comap_bot, ← infi_ker_proj], simp only [comap_infi, (ker_comp _ _).symm, proj_diagonal, ker_smul'], have : univ ⊆ {i : m | w i = 0} ∪ -{i : m | w i = 0}, { rw set.union_compl_self }, exact (supr_range_std_basis_eq_infi_ker_proj K (λi:m, K) (disjoint_compl {i | w i = 0}) this (finite.of_fintype _)).symm end lemma range_diagonal [decidable_eq m] (w : m → K) : (diagonal w).to_lin.range = (⨆ i ∈ {i | w i ≠ 0}, (std_basis K (λi, K) i).range) := begin dsimp only [mem_set_of_eq], rw [← map_top, ← supr_range_std_basis, map_supr], congr, funext i, rw [← linear_map.range_comp, diagonal_comp_std_basis, range_smul'], end lemma rank_diagonal [decidable_eq m] (w : m → K) : rank (diagonal w).to_lin = fintype.card { i // w i ≠ 0 } := begin have hu : univ ⊆ - {i : m | w i = 0} ∪ {i : m | w i = 0}, { rw set.compl_union_self }, have hd : disjoint {i : m | w i ≠ 0} {i : m | w i = 0} := (disjoint_compl {i | w i = 0}).symm, have h₁ := supr_range_std_basis_eq_infi_ker_proj K (λi:m, K) hd hu (finite.of_fintype _), have h₂ := @infi_ker_proj_equiv K _ _ (λi:m, K) _ _ _ _ (by simp; apply_instance) hd hu, rw [rank, range_diagonal, h₁, ←@dim_fun' K], apply linear_equiv.dim_eq, apply h₂, end end vector_space end matrix